
cpm:page-
sequence

INTEGRATION DEVELOPMENT
GUIDE
DEVELOPER GUIDE
Acumatica ERP 2020 R2

| Contents | 2

Contents
Copyright... 6
Integration Development Guide...7
Limiting Connections of Integrated Applications... 8

License Restrictions for API Users..8
Limitation of API Connections for Integrated Applications..12
To Limit the Number of API Connections of Integrated Applications.................................. 13
To Limit API Connections of a Particular Application... 14

Authorizing Client Applications to Work with Acumatica ERP.. 16
Authorization Code Flow...16
Implicit Flow... 23
Resource Owner Password Credentials Flow.. 27
Comparison of the Flows.. 32
To Register a Client Application... 33
To Revoke the Access of a Connected Application.. 35

Configuring the Contract-Based REST and SOAP API...37
Contract-Based Web Services API..37
Endpoints and Contracts...38
API Entities, Fields, and Actions.. 39
Custom Fields... 42
Custom Endpoints and Endpoint Extensions.. 44
Naming Rules for Endpoints..44
Comparison of Contract Versions... 45
Comparison of System Endpoints.. 46

Changes to the Entities, Fields, and Actions of the Default/18.200.001 Endpoint as Compared
to the Default/17.200.001 Endpoint...47
Changes to the Entities, Fields, and Actions of the Default/20.200.001 Endpoint as Compared
to the Default/18.200.001 Endpoint...52

To Create a Custom Endpoint..60
To Extend an Existing Endpoint... 63
To Validate an Endpoint..65

Working with the Contract-Based REST API.. 67
Representation of a Record in JSON Format..68
Sign-In to the Service..71
Sign-Out from the Service..75
Change of the Business Date or Current Branch.. 77
Creation of a Record..79
Update of a Record..83
Retrieval of a Record by Key Fields..88
Retrieval of a Record by ID.. 91
Retrieval of Records by Conditions...94
Retrieval of Data from an Inquiry Form..98
Retrieval of Records with Attributes... 101

| Contents | 3

Parameters for Retrieving Records... 104
Removal of a Record.. 107
Execution of an Action..111
Attachment of a File to a Record... 117
Retrieval of a File Attached to a Record..120
Retrieval of the Schema of Custom Fields... 125
Retrieval of the Acumatica ERP Version and the List of Endpoints................................... 127
Multi-Language Fields...129

Working with the Contract-Based SOAP API... 132
Multi-Language Fields...132
To Configure the Client Application...134

Working with the Screen-Based SOAP API.. 138
Screen-Based Web Services API.. 138
API Objects Related to Acumatica ERP Forms.. 139
Screen-Based API Wrapper... 141
To Generate the WSDL File of the Web Services.. 144
To Import the WSDL File Into the Development Environment...145
To Use the Screen-Based API Wrapper... 148

Working with Commands of the Screen-Based SOAP API.. 149
Commands for Retrieving the Values of Elements.. 149
Selection of a Group of Records for Export... 151
Commands for Setting the Values of Elements.. 152
Commands for Clicking Buttons on a Form..153
Commands for Adding Detail Lines...153
Commands for Pop-Up Dialog Boxes and Pop-Up Forms..154
Commands for Pop-Up Panels..157
Commands for Record Searching: Filter Service Command..159
Commands for Record Searching: Key Command...161
Commands for Record Searching: Custom Field...162
Commands That Require a Commit..163
Commands for Working with Attachments...164
Commands for Working with Multi-Language Fields.. 165

Configuring Push Notifications.. 167
Push Notifications.. 167
Recommendations for the Data Queries..169
Push Notification Destinations... 169
Push Notification Format...170
To Configure Push Notifications..171
To Process Failed Notifications... 174

Defining Push Notifications... 176
To Create a Built-In Definition... 176
To Connect to the SignalR Hub..178
To Add Additional Information to Push Notifications..180
To Create a Custom Destination Type...182

| Contents | 4

Configuring Webhooks...185
To Create an Implementation Class..185
To Register an Implementation Class..186
To Configure the External Application... 186
To Manage Request Log..186
Webhook Configuration Example..187

Contract-Based REST API Reference..192
Contract-Based REST API of a Web Service Endpoint..192
Contract-Based REST API of an Instance.. 192
To Import a REST Schema to a Visual Studio Solution.. 193

Contract-Based SOAP API Reference... 196
Login() Method..196
Logout() Method..198
SetBusinessDate() Method.. 198
Get() Method.. 199
GetList() Method (Contract Version 3).. 199
GetList() Method (Contract Version 2).. 201
Put() Method...202
Delete() Method.. 206
Invoke() Method..206
GetProcessStatus() Method... 207
GetFiles() Method.. 208
PutFiles() Method...208
GetCustomFieldSchema() Method.. 209
Attributes Property...210
CustomFields Property..211
ReturnBehavior Property (Contract Version 3)... 213
ReturnBehavior Property (Contract Version 2)... 216

Screen-Based SOAP API Reference..218
Login() Method..218
Logout() Method..220
SetLocaleName() Method.. 220
SetBusinessDate() Method.. 221
GetScenario() Method.. 221
GetSchema() Method... 222
SetSchema() Method..222
Export() Method.. 223
Submit() Method... 224
Import() Method..225
Clear() Method.. 226
GetProcessStatus() Method... 226

Contract-Based API Examples... 227
Inventory and Order Management (REST API Examples)...227

Creation of a Bill for Particular Lines of a Purchase Order or Receipt...........................228

| Contents | 5

Creation of a Purchase Receipts and Purchase Returns... 230
Creation of a Sales Order with Payments..234

Project Accounting (REST API Examples).. 238
Creation of a Pro Forma Invoice..238
Management of Account Groups.. 243
Running of Project Billing... 245
Creation of a General Ledger Transaction with a Project Code That Does Not Produce a Project
Transaction... 248
Time Entry... 249
Search for Time Entries by Date... 250

Customer Relationship Management (REST API Example)..251
Linking of a Case to Another Case...252
Linking of an Activity to an Entity..253
Working with Attributes of Top-Level Entities.. 254

POS Systems (SOAP API Examples)... 256
Entry of a Direct Sales Invoice..257
Entry of a Direct Sales Invoice Along with a Return... 261
Entry of a Credit Memo with Positive and Negative Lines.. 265
Entry of a Direct Sales Invoice in a Non-Default Currency...269
Entry of a Direct Sales Invoice for a Shipped Order and Return................................. 273
Entry of a Direct Sales Invoice for an Unshipped Sales Order.................................... 279
Entry of a Direct Sales Invoice for a Partially Shipped Sales Order............................. 284
Entry of a Credit Memo for an Unshipped Sales Order..292

| Copyright | 6

Copyright

© 2020 Acumatica, Inc. ALL RIGHTS RESERVED.

No part of this document may be reproduced, copied, or transmitted without the express prior consent
of Acumatica, Inc.
11235 SE 6th Street, Suite 140 Bellevue, WA 98004

Restricted Rights

The product is provided with restricted rights. Use, duplication, or disclosure by the United States
Government is subject to restrictions as set forth in the applicable License and Services Agreement
and in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 or subparagraphs (c)(1) and (c)(2) of the Commercial Computer Software-Restricted
Rights at 48 CFR 52.227-19, as applicable.

Disclaimer

Acumatica, Inc. makes no representations or warranties with respect to the contents or use of this
document, and specifically disclaims any express or implied warranties of merchantability or fitness for
any particular purpose. Further, Acumatica, Inc. reserves the right to revise this document and make
changes in its content at any time, without obligation to notify any person or entity of such revisions or
changes.

Trademarks

Acumatica is a registered trademark of Acumatica, Inc. HubSpot is a registered trademark of HubSpot,
Inc. Microsoft Exchange and Microsoft Exchange Server are registered trademarks of Microsoft
Corporation. All other product names and services herein are trademarks or service marks of their
respective companies.

Software Version: 2020 R2

| Integration Development Guide | 7

Integration Development Guide
In this guide, you can find information about how to develop client applications that work with
Acumatica ERP through the web services.

In This Guide

• Limiting Connections of Integrated Applications

• Authorizing Client Applications to Work with Acumatica ERP

• Configuring the Contract-Based REST and SOAP API

• Working with the Contract-Based REST API

• Working with the Contract-Based SOAP API

• Working with the Screen-Based SOAP API

• Working with Commands of the Screen-Based SOAP API

• Configuring Push Notifications

• Defining Push Notifications

• Configuring Webhooks

• Contract-Based REST API Reference

• Contract-Based SOAP API Reference

• Screen-Based SOAP API Reference

• Contract-Based API Examples

| Limiting Connections of Integrated Applications | 8

Limiting Connections of Integrated Applications
Acumatica ERP licenses include limitations that affect the external applications that are integrated
with Acumatica ERP through the web services APIs. In this chapter, you can find details about these
limitations and the limitations that can also be configured for integrated applications.

For general information about Acumatica ERP licenses, see Licensing and Activating Acumatica ERP.

In This Chapter

• License Restrictions for API Users

• Limitation of API Connections for Integrated Applications

• To Limit the Number of API Connections of Integrated Applications

• To Limit API Connections of a Particular Application

License Restrictions for API Users

API users are client applications that sign in to Acumatica ERP by using one of the following ways:

• The sign-in method of the contract-based REST API

• The sign-in method of the contract-based SOAP API

• The sign-in method of the screen-based SOAP API

• The OAuth 2.0 mechanism of authorization for applications

Each Acumatica ERP license includes the limits on the number of web services API users, the number
of concurrent API requests, and the number of web services API requests per minute. You can view
these limits of the Acumatica ERP license on the License Monitoring Console (SM604000) form. The
following sections describe these limits and the life cycle of API requests.

Number of Web Services API Users

On the License tab of the License Monitoring Console (SM604000) form, the Maximum Number of
Web Services API Users box displays the license restriction for the number of API users that can
work with Acumatica ERP. When an extra API user tries to sign in to the system and the number of API
user sessions exceeds your license restriction, an error message is returned and the sign-in process is
interrupted. The following diagram shows an example of how this limitation works with three sign-in
requests when the Maximum Number of Web Services API Users is set to 2.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=54d80ba4-0a1c-445c-9200-3a57d1c404c4
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=06869c57-819d-4626-a5a8-72507e6a79d8
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=06869c57-819d-4626-a5a8-72507e6a79d8

| Limiting Connections of Integrated Applications | 9

Figure: Rejection of an API user

To avoid exceeding the maximum number of API users, external applications must properly implement
the signing in to and signing out from Acumatica ERP. If an external application does not close its
sessions in Acumatica ERP (that is, does not sign out from Acumatica ERP in each session), this
application can prevent other applications from signing in. For details about the implementation of
signing in and signing out, see the following sources:

• Sign-In to the Service for the REST API

• Login() Method for the contract-based SOAP API

• Login() Method for the screen-based SOAP API

• The descriptions of the scopes in Authorization Code Flow, Implicit Flow, and Resource Owner Password
Credentials Flow for OAuth 2.0 authorization

Number of Concurrent Web Services API Requests

All incoming API requests (except the requests to sign out from Acumatica ERP, which are processed
immediately) are placed in an internal queue. To process these requests, the server uses the API
processing cores, which execute the requests in parallel. The number of cores is no more than the
maximum number of concurrent web services API requests, which is specified in the Maximum
Number of Concurrent Web Services API Requests box on the License tab of the License
Monitoring Console (SM604000) form.

The API processing cores take the requests from the queue one by one. If the limit for the number
of concurrent web services API requests has been reached (that is, if all API cores are processing the
requests), the next concurrent request waits in the queue and is processed when one of the previous
requests has completed.

The system sends a response to the request when the request is fully processed or declined.
For details about the life cycle of the requests, see Life Cycle of the Requests.

The following diagram shows an example of how this limitation works with Maximum Number of
Concurrent Web Services API Requests set to 3.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=06869c57-819d-4626-a5a8-72507e6a79d8
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=06869c57-819d-4626-a5a8-72507e6a79d8

| Limiting Connections of Integrated Applications | 10

Figure: Request 4 waiting in the internal queue

Number of Web Services API Requests per Minute

The maximum number of requests that can be processed per minute is specified in the Maximum
Number of Web Services API Requests per Minute box on the License tab of the License
Monitoring Console (SM604000) form. If the number of requests in a particular minute reaches 50
percent of the limit specified for the license, the subsequent requests during this minute are delayed
for the following time: 60 seconds minus the number of seconds that have passed since the beginning
of the current minute, divided by the remaining number of requests that can be processed in the
minute (per the specified maximum).

For example, suppose that in a particular license, the limit of the number of web services API requests
per minute is 50. Since the beginning of the current minute, if the system has already processed 25
requests in 40 seconds and the system receives another request, this request is delayed in the internal
queue for (60-40)/(50-25) seconds. After this delay, the request will be processed.

The system sends a response to the request when the request is fully processed or declined.
For details about the life cycle of the requests, see Life Cycle of the Requests.

The following diagram shows an example of how this limitation works with Maximum Number of
Web Services API Requests per Minute set to 50 and with 25 requests processed in the minute.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=06869c57-819d-4626-a5a8-72507e6a79d8
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=06869c57-819d-4626-a5a8-72507e6a79d8

| Limiting Connections of Integrated Applications | 11

Figure: Request 28 delayed in the internal queue

Decline of the Requests

The request will be declined only if the number of requests in the internal queue is greater than 20, or
the request remains in the queue for more than 10 minutes.

For example, suppose that during one second, each of 50 external applications sends a web services
API request to one Acumatica ERP server. Suppose also that each request is processed for 1 second
and that the maximum number of concurrent web services API requests in the license is 16. In this
case, the first 16 requests will be passed to 16 API processing cores immediately. The next 20 requests
will wait in the internal queue, and the last 14 requests will be declined.

Life Cycle of the Requests

The system sends a response to the request when the request is fully processed or declined. You can
view the statistics of the delayed and declined requests on the Statistics tab of the License Monitoring
Console (SM604000) form.

The following diagram shows the life cycle of a web services API request. For details about how the
sign-in requests are processed, see Limitation of API Connections for Integrated Applications.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=06869c57-819d-4626-a5a8-72507e6a79d8
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=06869c57-819d-4626-a5a8-72507e6a79d8

| Limiting Connections of Integrated Applications | 12

Figure: Life cycle of a request

Limitation of API Connections for Integrated
Applications

If an integrated application does not properly sign out from Acumatica ERP, this application can use all
of the API sessions included in the license (that is, reach the maximum number of API users, which is
described in License Restrictions for API Users), thus preventing other integrated applications from signing
in. To avoid such situations, you can limit the number of sessions for either each integration application
assigned to a user type or an individual integration application.

Before configuring these limits, on the Warnings tab of the License Monitoring Console (SM604000)
form, you can review whether any of the integrated application opens more than three sessions at a
time (which is a predefined system value for this form). If the number of sessions has not been limited
for an integrated application and this application opens more than three sessions at a time, a warning
is generated and listed in the table on this tab. This warning can indicate that you should configure
a limitation for the particular integration application or review the implementation of signing in and
signing out in the application.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=06869c57-819d-4626-a5a8-72507e6a79d8

| Limiting Connections of Integrated Applications | 13

Configuration of the Limitations

You limit the number of sessions used by each integration application on the User Types (EP202500)
form. Also, if it is necessary to specify a different limit for a particular integration application, you can
specify this limit on the Users (SM201010) form. For details about how to limit the number of sessions
in both of these ways, see To Limit the Number of API Connections of Integrated Applications and To Limit API
Connections of a Particular Application.

Life Cycle of Sign-in Requests

The life cycle of any type of requests (including sign-in requests) is described in Life Cycle of the
Requests. This section describes peculiarities of the life cycle of sign-in requests.

The limitations for the number of API users and the limit of the number of sessions for a particular
application are taken into account when one of the API processing cores takes the sign-in request. The
API processing core then processes the sign-in request as follows:

1. Checks whether the maximum number of API users is exceeded. For details about this limit, see
License Restrictions for API Users.

2. Checks whether the limit of the number of sessions specified for this API user is exceeded.

If the number of sessions opened by the integrated application reaches the limit specified for this
integrated application on either the User Types (EP202500) form or the Users (SM201010) form, the
integrated application cannot open any new session (that is, cannot sign in to Acumatica ERP) until
it closes one of the existing sessions. The system returns an error in the response to the sign-in
request.

If no limit is specified for the integration application on the User Types form or on the Users form,
the integration application can open no more sessions than the maximum number of API users in
the license.

The diagram in Life Cycle of the Requests shows how a sign-in request is processed by an API processing
core.

Related Links

• To Limit the Number of API Connections of Integrated Applications

• To Limit API Connections of a Particular Application

To Limit the Number of API Connections of Integrated
Applications

On the User Types (EP202500) form, you limit the number of sessions (that is, API connections) used
by each of the integrated applications. You can also specify a different limit for a particular integrated
application as described in To Limit API Connections of a Particular Application.

Before You Proceed
On the User Roles (SM201005) form, create a user role that will be used by integrated applications. For
details about user roles, see Configuring User Roles.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=778035ea-b6a9-4fa9-829c-3d44fee563a7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=834cc181-97fa-4db4-a7e0-3eaba142c166
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=778035ea-b6a9-4fa9-829c-3d44fee563a7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=834cc181-97fa-4db4-a7e0-3eaba142c166
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=778035ea-b6a9-4fa9-829c-3d44fee563a7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=834cc181-97fa-4db4-a7e0-3eaba142c166
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=778035ea-b6a9-4fa9-829c-3d44fee563a7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c2879f3c-3739-430a-b02b-c225f5480966
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=87725d67-0299-44c6-9dff-0302579217b0

| Limiting Connections of Integrated Applications | 14

To Limit API Connections of Each Integrated Application

1. Open the User Types (EP202500) form.

2. Create a user type that will be used by integrated applications as described in To Add a User Type.
On the Allowed Roles tab, add the role that you created in the preliminary instructions (Before
You Proceed).

3. On the Login Rules tab, specify the following settings:

• Allowed Login Type:

• API if your integration application uses the Login method of one of the web services API to
sign in to Acumatica ERP

• Unrestricted if your integration application uses OAuth 2.0 mechanism of authorization

• Allowed Number of Sessions: The maximum number of sessions (API connections) you
want to allow for each integration application

• Turn Off Two-Factor Authentication: Selected

4. Save your changes.

5. On the Users (SM201010) form, create a user account for each integrated application that can work
with this Acumatica ERP instance. For each user account, specify the type that you have created
in the previous steps and add the role that you have created in the preliminary instructions (Before
You Proceed). For details about the creation of a user account, see User Access: To Add User Account.

6. In each of the integrated applications, implement the signing in to Acumatica ERP with its own
user account (one of the user accounts created in the previous step). For details about the
implementation of signing in, see the following sources:

• Sign-In to the Service for the REST API

• Login() Method for the contract-based SOAP API

• Login() Method for the screen-based SOAP API

• The descriptions of the scopes in Authorization Code Flow, Implicit Flow, and Resource Owner
Password Credentials Flow for OAuth 2.0 authorization

Related Links

• Limitation of API Connections for Integrated Applications

• To Limit API Connections of a Particular Application

To Limit API Connections of a Particular Application

On the Users (SM201010) form, you can specify a limit for the number of sessions used by a particular
integrated application.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=778035ea-b6a9-4fa9-829c-3d44fee563a7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4e402478-7b3f-407c-a2e8-fdbd7fe932da
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=834cc181-97fa-4db4-a7e0-3eaba142c166
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=e1fb24a5-55b2-4856-afaa-b91b96ef51c3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=834cc181-97fa-4db4-a7e0-3eaba142c166

| Limiting Connections of Integrated Applications | 15

Instead of specifying a limit for a particular integrated application, on the User Types
(EP202500) form, you can limit the number of sessions for each integrated application. For
details about how to limit the number of sessions for each integrated application, see To Limit
the Number of API Connections of Integrated Applications.

If a limit is specified on the Users form for a user account associated with an integrated application,
this limit overrides any limit specified on the User Types form. If no limit is specified on the Users form
for a user account associated with an integration application, any limit specified on the User Types form
is used.

To Limit API Connections of a Particular Application

1. Open the Users (SM201010) form.

2. For the user account that the integration application uses, type the account's maximum number of
sessions in the Allowed Number of Sessions box.

Related Links

• Limitation of API Connections for Integrated Applications

• To Limit the Number of API Connections of Integrated Applications

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=778035ea-b6a9-4fa9-829c-3d44fee563a7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=834cc181-97fa-4db4-a7e0-3eaba142c166
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=778035ea-b6a9-4fa9-829c-3d44fee563a7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=834cc181-97fa-4db4-a7e0-3eaba142c166
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=778035ea-b6a9-4fa9-829c-3d44fee563a7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=834cc181-97fa-4db4-a7e0-3eaba142c166

| Authorizing Client Applications to Work with Acumatica ERP | 16

Authorizing Client Applications to Work with
Acumatica ERP

Acumatica ERP supports the OAuth 2.0 mechanism of authorization for applications that are integrated
with Acumatica ERP through application programming interfaces (APIs) and OData. When a client
application of Acumatica ERP uses the OAuth 2.0 mechanism of authorization, the client application
does not operate with the Acumatica ERP credentials to sign in a user to Acumatica ERP; instead, the
application obtains an access token from Acumatica ERP and uses this token when it requests data
from Acumatica ERP.

Depending on the OAuth 2.0 flow that the client application implements, the client application either
has no information on the credentials of an Acumatica ERP user or uses this information only once
to obtain the access token. The OAuth 2.0 mechanism of authorization improves the security of the
Acumatica ERP data accessed by the application and simplifies the management of access rights.

The client application that implements the OAuth 2.0 authorization mechanism can use one of the
OAuth 2.0 authorization flows supported by Acumatica ERP, which are the following:

• Authorization code

• Implicit

• Resource owner password credentials

In this chapter, you can find details on the OAuth 2.0 authorization flows and information about how to
register the OAuth 2.0 or OpenID Connect client applications and revoke access of the applications.

In This Chapter

• Authorization Code Flow

• Implicit Flow

• Resource Owner Password Credentials Flow

• Comparison of the Flows

• To Register a Client Application

• To Revoke the Access of a Connected Application

Authorization Code Flow

When you implement OAuth 2.0 authorization in a client application to make the application work
with Acumatica ERP, you can use the authorization code flow. With this authorization flow, the
client application never gets the credentials of the applicable Acumatica ERP user. After the user is
authenticated in Acumatica ERP, the client application receives an authorization code, exchanges it for
an access token, and then uses the access token to work with data in Acumatica ERP. When the access
token expires, the client application can request a new access token by providing a refresh token.
The following diagram illustrates the authorization code flow, whose steps are described in the sections
of this topic.

| Authorizing Client Applications to Work with Acumatica ERP | 17

Figure: Authorization code flow

For details on the OAuth 2.0 authorization mechanism, see the specification at https://tools.ietf.org/html/
rfc6749.

Granting Permission to a Client Application

Before an OAuth 2.0 client application can work with Acumatica ERP, you must register this application
in Acumatica ERP and provide credentials to the application, as described in To Register a Client
Application with the Authorization Code Flow. After the registration, you have the client ID and the secret
value of the client application.

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749

| Authorizing Client Applications to Work with Acumatica ERP | 18

• According to the OAuth 2.0 specification, a secure connection between an OAuth 2.0
client application and the Acumatica ERP website with a Secure Socket Layer (SSL)
certificate is required. Therefore, you have to set up the Acumatica ERP website for
HTTPS before the OAuth 2.0 client application can work with data in Acumatica ERP. For
more information, see Setting Up an HTTPS Service in Web Server (IIS).

• When you are registering the client application, you have to be logged in to the tenant
whose data the client application needs to access.

Connecting to the Authorization Endpoint

The client application connects to the authorization endpoint of Acumatica ERP by specifying the
following URL with parameters:

• URL

The client application can use one of the following options:

• If the client application supports OpenID Connect Discovery, the client application can use the
discovery endpoint address, which is https://<Acumatica ERP instance URL>/identity/.
In this address, <Acumatica ERP instance URL> is the URL of the Acumatica ERP instance to
which the client application is going to connect.

For example, for a local Acumatica ERP instance with the name AcumaticaDB, the discovery
endpoint address is https://localhost/AcumaticaDB/identity/.

We recommend that the client application use the discovery endpoint address, which
eliminates the need to change the application if the authorization or token endpoint
address changes.

• The client application can directly use the authorization endpoint address, which is https://
<Acumatica ERP instance URL>/identity/connect/authorize. In this address, <Acumatica
ERP instance URL> is the URL of the Acumatica ERP instance to which the client application is
going to connect.

For example, for a local Acumatica ERP instance with the name AcumaticaDB, the authorization
endpoint address is https://localhost/AcumaticaDB/identity/connect/authorize.

• URL Parameters

The client application should specify the following URL parameters.

Parameter Description

response_type The type of the OAuth 2.0 flow, which must be set to code for the authoriza-
tion code flow.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b4e12b01-e871-4c89-ba66-cee62f40449a

| Authorizing Client Applications to Work with Acumatica ERP | 19

Parameter Description

client_id
The client ID that was assigned to the client application during the registra-
tion of the application in Acumatica ERP. The client ID must have the for-
mat in which the ID was generated during the registration of the application.
That is, the client ID must include an auto-generated string and the ID of the
company, such as 88358B02-A48D-A50E-F710-39C1636C30F6@MyCompany.
The client application will have access to the data of the company specified in
the client ID.

redirect_uri
The URI in the client application to which the response to the request should
be sent. The URI must exactly match one of the values specified for the ap-
plication in the Redirect URI column on the Redirect URIs tab of the Con-
nected Applications (SM303010) form.

scope
The access scope that is requested by the client application. The scope can
be a combination of the following values, delimited by spaces:

•
api: Requests access to a web services API. If a user grants this scope to
the application, the client application can work with either or both of the
following types of the web services API: contract-based SOAP API or con-
tract-based REST API.

If this scope is granted and the api:concurrent_access scope is not
granted, Acumatica ERP manages the sessions of the application through
tokens. Acumatica ERP issues the first access token along with the session
ID. If the client application requests a new access token by presenting a
refresh token, Acumatica ERP reuses the session ID that was issued for the
first access token issued with the refresh token. That is, the system uses a
single session for each access granted to the client application. For details
about the license limitations related to the number of sessions for client
applications, see License Restrictions for API Users.

• offline_access: Requests that a refresh token be granted. If a user
grants this scope to the application, Acumatica ERP issues to the client ap-
plication a refresh token along with the access token. (For information on
issuing the access token, see Connecting to the Token Endpoint in this topic.)
When the access token has expired, the client application can request a
new access token by sending a request to the token endpoint and provid-
ing the refresh token.

• api:concurrent_access: Requests permission for the concurrent use of
multiple types of web service APIs. If a user grants this scope to the ap-
plication, the client application can access data in Acumatica ERP in con-
current mode. In this case, Acumatica ERP can maintain multiple sessions
for the client application, managing session IDs through cookies. We rec-
ommend that the client application request this scope only if concurrent
access is required for the client application. For details about the license
limitations related to the number of sessions for client applications, see Li-
cense Restrictions for API Users.

An example of a URL with parameters is shown below. (Line breaks are for display purposes only.)

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6ca02ea1-884d-4981-9d72-0fa83b40028c
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6ca02ea1-884d-4981-9d72-0fa83b40028c

| Authorizing Client Applications to Work with Acumatica ERP | 20

https://localhost/AcumaticaDB/identity/connect/authorize?
response_type=code
&client_id=4B1DFD71-C5EE-0B21-A6BE-9A1F060A93BD
&redirect_uri=http%3A%2F%2Flocalhost%2Fclientapp%2F
&scope=api%20offline_access

Authorizing a User in Acumatica ERP and Granting Access

The authorization endpoint directs the user of the client application to the login page of Acumatica ERP,
where the user should enter the credentials to log in to a company configured in the Acumatica ERP
instance.

The user must log in to the company that was specified in the client_id URL parameter
passed to the authorization endpoint. (This company is selected by default on the login
page.)

If the credentials are accepted by Acumatica ERP, the system displays the consent form, where the
user can confirm that the application has access to the requested scopes. Only the scopes that were
requested by the application are displayed on the consent form.

Receiving the Authorization Code

Once the user grants access to the requested scopes, Acumatica ERP redirects the client application to
the redirect_uri address that was specified in the request, and adds the authorization code in the
code URL parameter.

Connecting to the Token Endpoint

The client application connects to the token endpoint of Acumatica ERP by specifying the following URL
and the following parameters in the request body:

• URL

The client application can use one of the following options:

• If the client application supports OpenID Connect Discovery, the client application can use the
discovery endpoint address, which is https://<Acumatica ERP instance URL>/identity/.
In this address, <Acumatica ERP instance URL> is the URL of the Acumatica ERP instance to
which the client application is going to connect.

For example, for a local Acumatica ERP instance with the name AcumaticaDB, the discovery
endpoint address is https://localhost/AcumaticaDB/identity/.

We recommend that the client application use the discovery endpoint address, which
eliminates the need to change the application if the authorization or token endpoint
address changes.

• The client application can directly use the token endpoint address, which is https://
<Acumatica ERP instance URL>/identity/connect/token. In this endpoint, <Acumatica
ERP instance URL> is the URL of the Acumatica ERP instance to which the client application is
going to connect.

For example, for a local Acumatica ERP instance with the name AcumaticaDB, the token
endpoint address is https://localhost/AcumaticaDB/identity/connect/token.

| Authorizing Client Applications to Work with Acumatica ERP | 21

• Parameters in the Request Body

You specify the following parameters in the request body.

Parameter Description

grant_type
The type of the OAuth 2.0 flow, which must be set to authorization_code
for the authorization code flow.

client_id
The client ID that was assigned to the client application during the registra-
tion of the application in Acumatica ERP. The client ID must have the for-
mat in which the ID was generated during the registration of the application.
That is, the client ID must include an auto-generated string and the ID of the
company, such as 88358B02-A48D-A50E-F710-39C1636C30F6@MyCompany.
The client application will have access to the data of the company specified in
the client ID.

code
The authorization code that the client application has received from the au-
thorization endpoint.

client_secret
The value of the secret that was created for the client application during the
registration of the application in Acumatica ERP.

redirect_uri
The URI in the client application to which the response to the request should
be sent. The URI must exactly match one of the values specified for the ap-
plication in the Redirect URI column on the Redirect URIs tab of the Con-
nected Applications (SM303010) form.

Receiving the Access Token

Acumatica ERP verifies the provided application credentials and issues the access token, which the
client application should provide with each data request to Acumatica ERP. During authentication in
Acumatica ERP, if the user has granted to the client application the offline_access scope, Acumatica
ERP issues the refresh token along with the access token. A successful response includes the following
parameters in the response body.

Parameter Description

token_type The type of the access token, which is Bearer.

access_token The access token.

expires_in The period of time during which the access token is valid.

refresh_token The refresh token. The parameter is returned only if the offline_access scope
was granted.

Requesting Data with the Access Token

The client application should include the access token in the Authorization header of each
subsequent request to Acumatica ERP, as shown in the following HTTP example.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6ca02ea1-884d-4981-9d72-0fa83b40028c
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6ca02ea1-884d-4981-9d72-0fa83b40028c

| Authorizing Client Applications to Work with Acumatica ERP | 22

GET /AcumaticaDB/entity/Default/18.200.001/SalesOrder/SO/000001 HTTP/1.1
Host: localhost
Authorization: Bearer cde78a99a2dc6388eb8c7242a90cf9bc

Refreshing the Access Token

The access token is valid for a specific period of time, which is specified in the response that returns
the access token. When the access token expires, the client application can request a new access
token by providing the refresh token to the token endpoint. To request a new access token, the client
application should have the following URL and the following parameters specified in the request body:

• URL

The client application can use one of the following options:

• If the client application supports OpenID Connect Discovery, the client application can use the
discovery endpoint address, which is https://<Acumatica ERP instance URL>/identity/.
In this address, <Acumatica ERP instance URL> is the URL of the Acumatica ERP instance to
which the client application is going to connect.

For example, for a local Acumatica ERP instance with the name AcumaticaDB, the discovery
endpoint address is https://localhost/AcumaticaDB/identity/.

We recommend that the client application use the discovery endpoint address, which
eliminates the need to change the application if the authorization or token endpoint
address changes.

• The client application can directly use the token endpoint address, which is https://
<Acumatica ERP instance URL>/identity/connect/token. In this endpoint, <Acumatica
ERP instance URL> is the URL of the Acumatica ERP instance to which the client application is
going to connect.

For example, for a local Acumatica ERP instance with the name AcumaticaDB, the token
endpoint address is https://localhost/AcumaticaDB/identity/connect/token.

• Parameters in the Request Body

You specify the following parameters in the request body.

Parameter Description

grant_type The type of the request, which must be set to refresh_token for the request
of the refresh token.

client_id
The client ID that was assigned to the client application during the registra-
tion of the application in Acumatica ERP. The client ID must have the for-
mat in which the ID was generated during the registration of the application.
That is, the client ID must include an auto-generated string and the ID of the
company, such as 88358B02-A48D-A50E-F710-39C1636C30F6@MyCompany.
The client application will have access to the data of the company specified in
the client ID.

client_secret
The value of the secret that was created for the client application during the
registration of the application in Acumatica ERP.

| Authorizing Client Applications to Work with Acumatica ERP | 23

Parameter Description

refresh_token The refresh token that the client application received from the token end-
point along with the access token if the user granted the offline_access
scope to the client application.

Receiving the New Access Token

Acumatica ERP verifies the provided application credentials and issues the new access token and
the new refresh token. To request the access token once again, the client application should use the
refresh token issued with the previous access token. A successful response includes the following
parameters in the response body.

Parameter Description

token_type The type of the access token, which is Bearer.

access_token The access token.

expires_in The period of time during which the access token is valid.

refresh_token The refresh token.

Logging Out from Acumatica ERP

To prevent issues with licenses that limit the number of concurrent user sessions, the client application
should directly call the logout method of the Acumatica ERP web services API when the application
finishes its work with Acumatica ERP.

Related Links

• RFC 6749: The OAuth 2.0 Authorization Framework

Implicit Flow

When you implement OAuth 2.0 authorization in a client application to make the application work with
Acumatica ERP, you can use the implicit flow, which is a simplified variant of the authorization code
flow.

With the implicit flow, the client application never gets the credentials of the applicable Acumatica
ERP user. When the user is authenticated in Acumatica ERP, the client application does not receive an
authorization code (as with the authorization code flow); instead, the client application directly receives
an access token, and then uses the access token to work with data in Acumatica ERP. The access token
is valid for a limited period of time and cannot be renewed.

The following diagram illustrates the implicit flow, whose steps are described in the sections later in
this topic.

| Authorizing Client Applications to Work with Acumatica ERP | 24

Figure: Implicit flow

This flow can be used for clients using a scripting language (such as JavaScript) or for mobile clients.
For details on the OAuth 2.0 authorization mechanism, see the specification at https://tools.ietf.org/html/
rfc6749.

Granting Permission to a Client Application

Before an OAuth 2.0 client application can work with Acumatica ERP, you must register this application
in Acumatica ERP and provide credentials to the application, as described in To Register a Client
Application with the Implicit Flow. After the registration, you have the client ID of the client application.

• According to the OAuth 2.0 specification, a secure connection between an OAuth 2.0
client application and the Acumatica ERP website with a Secure Socket Layer (SSL)
certificate is required. Therefore, you have to set up the Acumatica ERP website for
HTTPS before the OAuth 2.0 client application can work with data in Acumatica ERP. For
more information, see Setting Up an HTTPS Service in Web Server (IIS).

• When you are registering the client application, you have to be logged in to the tenant
whose data the client application needs to access.

Connecting to the Authorization Endpoint

The client application connects to the authorization endpoint of Acumatica ERP by specifying the
following URL and parameters:

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b4e12b01-e871-4c89-ba66-cee62f40449a

| Authorizing Client Applications to Work with Acumatica ERP | 25

• URL

The client application can use one of the following options:

• If the client application supports OpenID Connect Discovery, the client application can use the
discovery endpoint address, which is https://<Acumatica ERP instance URL>/identity/.
In this address, <Acumatica ERP instance URL> is the URL of the Acumatica ERP instance to
which the client application is going to connect.

For example, for a local Acumatica ERP instance with the name AcumaticaDB, the discovery
endpoint address is https://localhost/AcumaticaDB/identity/.

We recommend that the client application use the discovery endpoint address, which
eliminates the need to change the application if the authorization or token endpoint
address changes.

• The client application can directly use the authorization endpoint address, which is https://
<Acumatica ERP instance URL>/identity/connect/authorize. In this address, <Acumatica
ERP instance URL> is the URL of the Acumatica ERP instance to which the client application is
going to connect.

For example, for a local Acumatica ERP instance with the name AcumaticaDB, the authorization
endpoint address is https://localhost/AcumaticaDB/identity/connect/authorize.

• URL Parameters

The client application should specify the following URL parameters.

Parameter Description

response_type The type of the OAuth 2.0 flow, which must be set to token for the implicit
flow.

client_id
The client ID that was assigned to the client application during the registra-
tion of the application in Acumatica ERP. The client ID must have the for-
mat in which the ID was generated during the registration of the application.
That is, the client ID must include an auto-generated string and the ID of the
company, such as 88358B02-A48D-A50E-F710-39C1636C30F6@MyCompany.
The client application will have access to the data of the company specified in
the client ID.

redirect_uri
The URI in the client application to which the response to the request should
be sent. The URI must exactly match one of the values specified for the ap-
plication in the Redirect URI column on the Redirect URIs tab of the Con-
nected Applications (SM303010) form.

scope
The access scope that is requested by the client application. The scope can
be a combination of the following values delimited by spaces:

•
api: Requests access to a web services API. If a user grants this scope to
the application, the client application can work with either or both of the
following types of the web services API: contract-based SOAP API or con-
tract-based REST API.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6ca02ea1-884d-4981-9d72-0fa83b40028c
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6ca02ea1-884d-4981-9d72-0fa83b40028c

| Authorizing Client Applications to Work with Acumatica ERP | 26

Parameter Description

If this scope is granted and the api:concurrent_access scope is not
granted, Acumatica ERP manages the sessions of the application through
tokens. The system uses a single session for each access granted to the
client application.

• api:concurrent_access: Requests permission for the concurrent use of
multiple types of web service APIs. If a user grants this scope to the ap-
plication, the client application can access data in Acumatica ERP in con-
current mode. In this case, Acumatica ERP can maintain multiple sessions
for the client application, managing session IDs through cookies. We rec-
ommend that the client application request this scope only if concurrent
access is required for the client application. For details about the license
limitations related to the number of sessions for client applications, see Li-
cense Restrictions for API Users.

The offline_access scope is not supported by the implicit flow.

An example of the HTTP request is shown below. (Line breaks are for display purposes only.)

http://localhost/AcumaticaDB/identity/connect/authorize?
response_type=token
&client_id=4B1DFD71-C5EE-0B21-A6BE-9A1F060A93BD
&redirect_uri=http%3A%2F%2Flocalhost%2Fclientapp%2F
&scope=api

Authorizing a User in Acumatica ERP and Granting Access

The authorization endpoint directs the user of the client application to the login page of Acumatica ERP,
where the user should enter the credentials to log in to a company configured in the Acumatica ERP
instance.

The user must log in to the company that was specified in the client_id URL parameter
passed to the authorization endpoint. (This company is selected by default on the login
page.)

If the credentials are accepted by Acumatica ERP, the system displays the consent form, where the
user can confirm that the application has access to the requested scopes. Only the scopes that were
requested by the application are displayed on the consent form.

Obtaining the Access Token

Once the user grants access to the requested scopes, Acumatica ERP redirects the client application to
the redirect_uri address, which was specified in the request, and adds the access token in the URL
parameters. The redirect URL includes the following URL parameters.

Parameter Description

token_type The type of the access token, which is Bearer.

access_token The access token.

| Authorizing Client Applications to Work with Acumatica ERP | 27

Parameter Description

expires_in The period of time during which the access token is valid.

Refresh tokens are not supported by the implicit flow.

Requesting Data with the Access Token

The client application should include the access token in the Authorization header of each
subsequent request to Acumatica ERP, as shown in the following HTTP example.

GET /AcumaticaDB/entity/Default/18.200.001/SalesOrder/SO/000001 HTTP/1.1
Host: localhost
Authorization: Bearer cde78a99a2dc6388eb8c7242a90cf9bc

Logging Out from Acumatica ERP

To prevent issues with licenses that limit the number of concurrent user sessions, the client application
should directly call the logout method of the Acumatica ERP web services API when the application
finishes its work with Acumatica ERP.

Related Links

• RFC 6749: The OAuth 2.0 Authorization Framework

Resource Owner Password Credentials Flow

When you implement OAuth 2.0 authorization in a client application to make the application work with
Acumatica ERP, you can use the resource owner password credentials flow.

With the resource owner password credentials flow, the credentials (username and password) of the
Acumatica ERP user are provided directly to the client application, which uses the credentials to obtain
the access token. When the access token expires, the client application can request a new access token
by providing a refresh token.

The following diagram illustrates the resource owner password credentials flow, whose steps are
described in the sections later in this topic.

| Authorizing Client Applications to Work with Acumatica ERP | 28

Figure: Resource owner password credentials flow

For details on the OAuth 2.0 authorization mechanism, see the specification at https://tools.ietf.org/html/
rfc6749.

Granting Permission to a Client Application

Before an OAuth 2.0 client application can work with Acumatica ERP, you must register this application
in Acumatica ERP and provide credentials to the application, as described in To Register a Client
Application with the Resource Owner Password Flow. After the registration, you have the client ID and secret
value of the client application.

• According to the OAuth 2.0 specification, a secure connection between an OAuth 2.0
client application and the Acumatica ERP website with a Secure Socket Layer (SSL)
certificate is required. Therefore, you have to set up the Acumatica ERP website for
HTTPS before the OAuth 2.0 client application can work with data in Acumatica ERP. For
more information, see Setting Up an HTTPS Service in Web Server (IIS).

• When you are registering the client application, you have to be logged in to the tenant
whose data the client application needs to access.

Obtaining the Credentials of the Acumatica ERP User

The client application should obtain the username and password of the applicable Acumatica ERP user,
which can then be exchanged for an access token.

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b4e12b01-e871-4c89-ba66-cee62f40449a

| Authorizing Client Applications to Work with Acumatica ERP | 29

Connecting to the Token Endpoint

The client application connects to the token endpoint of Acumatica ERP by specifying the following URL
and parameters in the request body:

• URL

The client application can use one of the following options:

• If the client application supports OpenID Connect Discovery, the client application can use the
discovery endpoint address, which is https://<Acumatica ERP instance URL>/identity/.
In this address, <Acumatica ERP instance URL> is the URL of the Acumatica ERP instance to
which the client application is going to connect.

For example, for a local Acumatica ERP instance with the name AcumaticaDB, the discovery
endpoint address is https://localhost/AcumaticaDB/identity/.

We recommend that the client application use the discovery endpoint address, which
eliminates the need to change the application if the authorization or token endpoint
address changes.

• The client application can directly use the token endpoint address, which is https://
<Acumatica ERP instance URL>/identity/connect/token. In this endpoint, <Acumatica
ERP instance URL> is the URL of the Acumatica ERP instance to which the client application is
going to connect.

For example, for a local Acumatica ERP instance with the name AcumaticaDB, the token
endpoint address is https://localhost/AcumaticaDB/identity/connect/token.

• Parameters in the Request Body

You specify the following parameters in the request body.

Parameter Description

grant_type
The type of the OAuth 2.0 flow, which must be set to password for the re-
source owner password credentials flow.

client_id
The client ID that was assigned to the client application during the registra-
tion of the application in Acumatica ERP. The client ID must have the for-
mat in which the ID was generated during the registration of the application.
That is, the client ID must include an auto-generated string and the ID of the
company, such as 88358B02-A48D-A50E-F710-39C1636C30F6@MyCompany.
The client application will have access to the data of the company specified in
the client ID.

client_secret
The value of the secret that was created for the client application during the
registration of the application in Acumatica ERP.

username
The username of an Acumatica ERP user.

password
The password for the specified username.

| Authorizing Client Applications to Work with Acumatica ERP | 30

Parameter Description

scope
The access scope that is requested by the client application. The scope can
be a combination of the following values, delimited by spaces:

•
api: Requests access to a web services API. If a user grants this scope to
the application, the client application can work with either or both of the
following types of the web services API: contract-based SOAP API or con-
tract-based REST API.

If this scope is granted and the api:concurrent_access scope is not
granted, Acumatica ERP manages the sessions of the application through
tokens. Acumatica ERP issues the first access token along with the session
ID. If the client application requests a new access token by presenting a
refresh token, Acumatica ERP reuses the session ID that was issued for the
first access token issued with the refresh token. That is, the system uses a
single session for each access granted to the client application. For details
about the license limitations related to the number of sessions for client
applications, see License Restrictions for API Users.

• offline_access: Requests that a refresh token be granted. If a user
grants this scope to the application, Acumatica ERP issues to the client ap-
plication a refresh token along with the access token. (For information on
issuing the access token, see Connecting to the Token Endpoint in this topic.)
When the access token has expired, the client application can request a
new access token by sending a request to the token endpoint and provid-
ing the refresh token.

• api:concurrent_access: Requests permission for the concurrent use of
multiple types of web service APIs. If a user grants this scope to the ap-
plication, the client application can access data in Acumatica ERP in con-
current mode. In this case, Acumatica ERP can maintain multiple sessions
for the client application, managing session IDs through cookies. We rec-
ommend that the client application request this scope only if concurrent
access is required for the client application. For details about the license
limitations related to the number of sessions for client applications, see Li-
cense Restrictions for API Users.

Receiving the Access Token

Acumatica ERP verifies the provided application credentials and issues the access token, which the
client application should provide with each data request to Acumatica ERP. During authentication in
Acumatica ERP, if the user has granted to the client application the offline_access scope, Acumatica
ERP issues the refresh token along with the access token. A successful response includes the following
parameters in the response body.

Parameter Description

token_type The type of the access token, which is Bearer.

access_token The access token.

expires_in The period of time during which the access token is valid.

| Authorizing Client Applications to Work with Acumatica ERP | 31

Parameter Description

refresh_token The refresh token. The parameter is returned only if the offline_access scope
was granted.

Requesting Data with the Access Token

The client application should include the access token in the Authorization header of each
subsequent request to Acumatica ERP, as shown in the following HTTP example.

GET /AcumaticaDB/entity/Default/18.200.001/SalesOrder/SO/000001 HTTP/1.1
Host: localhost
Authorization: Bearer cde78a99a2dc6388eb8c7242a90cf9bc

Refreshing the Access Token

The access token is valid for a specific period of time, which is specified in the response that returns
the access token. When the access token expires, the client application can request a new access
token by providing the refresh token to the token endpoint. To request a new access token, the client
application should have the following URL and the following parameters specified in the request body:

• URL

The client application can use one of the following options:

• If the client application supports OpenID Connect Discovery, the client application can use the
discovery endpoint address, which is https://<Acumatica ERP instance URL>/identity/.
In this address, <Acumatica ERP instance URL> is the URL of the Acumatica ERP instance to
which the client application is going to connect.

For example, for a local Acumatica ERP instance with the name AcumaticaDB, the discovery
endpoint address is https://localhost/AcumaticaDB/identity/.

We recommend that the client application use the discovery endpoint address, which
eliminates the need to change the application if the authorization or token endpoint
address changes.

• The client application can directly use the token endpoint address, which is https://
<Acumatica ERP instance URL>/identity/connect/token. In this endpoint, <Acumatica
ERP instance URL> is the URL of the Acumatica ERP instance to which the client application is
going to connect.

For example, for a local Acumatica ERP instance with the name AcumaticaDB, the token
endpoint address is https://localhost/AcumaticaDB/identity/connect/token.

• Parameters in the Request Body

You specify the following parameters in the request body.

Parameter Description

grant_type The type of the request, which must be set to refresh_token for the request
of the refresh token.

| Authorizing Client Applications to Work with Acumatica ERP | 32

Parameter Description

client_id
The client ID that was assigned to the client application during the registra-
tion of the application in Acumatica ERP. The client ID must have the for-
mat in which the ID was generated during the registration of the application.
That is, the client ID must include an auto-generated string and the ID of the
company, such as 88358B02-A48D-A50E-F710-39C1636C30F6@MyCompany.
The client application will have access to the data of the company specified in
the client ID.

client_secret
The value of the secret that was created for the client application during the
registration of the application in Acumatica ERP.

refresh_token The refresh token that the client application received from the token end-
point along with the access token if the user granted the offline_access
scope to the client application.

Receiving the New Access Token

Acumatica ERP verifies the provided application credentials and issues the new access token and
the new refresh token. To request the access token once again, the client application should use the
refresh token issued with the previous access token. A successful response includes the following
parameters in the response body.

Parameter Description

token_type The type of the access token, which is Bearer.

access_token The access token.

expires_in The period of time during which the access token is valid.

refresh_token The refresh token.

Logging Out from Acumatica ERP

To prevent issues with licenses that limit the number of concurrent user sessions, the client application
should directly call the logout method of the Acumatica ERP web services API when the application
finishes its work with Acumatica ERP.

Related Links

• RFC 6749: The OAuth 2.0 Authorization Framework

Comparison of the Flows

The table below summarizes the characteristics of the authorization flows supported by Acumatica ERP.

Characteristic Authorization
Code

Implicit Resource Owner
Password Cre-
dentials

The access token is returned from the
authorization endpoint.

No Yes No

| Authorizing Client Applications to Work with Acumatica ERP | 33

Characteristic Authorization
Code

Implicit Resource Owner
Password Cre-
dentials

The access token is returned from the
token endpoint.

Yes No Yes

The refresh token can be issued. Yes No Yes

The client application has access to
Acumatica ERP credentials (username
and password).

No No Yes

The client application is authenticat-
ed in Acumatica ERP (that is, the client
application provides the client ID and
client secret).

Yes No Yes

Related Links

• Authorization Code Flow

• Implicit Flow

• Resource Owner Password Credentials Flow

To Register a Client Application

You use the Connected Applications (SM303010) form to register an OAuth 2.0 or OpenID Connect client
application.

To register a client application in Acumatica ERP, you need to know the OAuth 2.0 flow that this
application implements. For more information on the flows, see Authorization Code Flow, Implicit Flow, and
Resource Owner Password Credentials Flow.

• According to the OAuth 2.0 specification, a secure connection between an OAuth 2.0
client application and the Acumatica ERP website with a Secure Socket Layer (SSL)
certificate is required. Therefore, you have to set up the Acumatica ERP website for
HTTPS before the OAuth 2.0 client application can work with data in Acumatica ERP. For
more information, see Setting Up an HTTPS Service in Web Server (IIS).

• When you are registering the client application, you have to be logged in to the tenant
whose data the client application needs to access.

To Register a Client Application with the Authorization Code Flow

1. On the System tab, click Integration. In the navigation pane, navigate to Configure >
Connected Applications.

2. In the Client Name box, type the name of the registered application.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6ca02ea1-884d-4981-9d72-0fa83b40028c
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b4e12b01-e871-4c89-ba66-cee62f40449a

| Authorizing Client Applications to Work with Acumatica ERP | 34

Leave the Client ID box blank. The system will fill it in when you save your changes on
the form.

3. In the OAuth 2.0 Flow box, select Authorization Code.

4. On the Secrets tab, do the following for each client secret you want to add:

a. On the tab toolbar, click Add Shared Secret. The Add Shared Secret dialog box opens.

b. In the Description box, type the description of the shared secret.

c. Optional: In the Expires On (UTC) box, enter the date and time on which the secret expires.

d. Copy and save the value that is displayed in the Value box. The client application should use
this client secret for authentication in Acumatica ERP.

For security reasons, the value of the secret is displayed only once: when you create
the secret by invoking this dialog box.

e. Click OK to save the secret and close the dialog box.

5. On the Redirect URIs tab, do the following for each redirect URI you want to add:

a. On the tab toolbar, click Add Row.

b. In the Redirect URI column of the new row, type the exact redirect URI to which Acumatica
ERP should redirect the client application after the client application has been authorized. The
redirect URI must be absolute and must not have the fragment part (the part preceded with
#).

6. On the form toolbar, click Save. Notice that the client ID has been generated in the Client ID box.
The client application should use this client ID along with the client secret for authentication in
Acumatica ERP.

To Register a Client Application with the Implicit Flow

1. On the System tab, click Integration. In the navigation pane, navigate to Configure >
Connected Applications.

2. In the Client Name box, type the name of the registered application.

Leave the Client ID box blank. The system will fill it in when you save your changes on
the form.

3. In the OAuth 2.0 Flow box, select Implicit.

4. On the Redirect URIs tab, do the following for each redirect URI you want to add:

a. On the tab toolbar, click Add Row.

b. In the Redirect URI column of the new row, type the exact redirect URI to which Acumatica
ERP should redirect the client application after the client application has been authorized. The
redirect URI must be absolute and must not have the fragment part (the part preceded with
#).

| Authorizing Client Applications to Work with Acumatica ERP | 35

5. On the form toolbar, click Save. Notice that the client ID has been generated in the Client ID
box. You should use this client ID to connect the client application to the authorization endpoint of
Acumatica ERP.

To Register a Client Application with the Resource Owner Password Flow

1. On the System tab, click Integration. In the navigation pane, navigate to Configure >
Connected Applications.

2. In the Client Name box, type the name of the registered application.

Leave the Client ID box blank. The system will fill it in when you save your changes on
the form.

3. In the OAuth 2.0 Flow box, select Resource Owner Password Credentials.

4. On the Secrets tab, do the following for each client secret you want to add:

a. On the tab toolbar, click Add Shared Secret. The Add Shared Secret dialog box opens.

b. In the Description box, type the description of the shared secret.

c. Optional: In the Expires On (UTC) box, enter the date and time on which the secret expires.

d. Copy and save the value that is displayed in the Value box. The client application should use
this client secret for authentication in Acumatica ERP.

For security reasons, the value of the secret is displayed only once: when you create
the secret by invoking this dialog box.

e. Click OK to save the secret and close the dialog box.

5. On the form toolbar, click Save. Notice that the client ID has been generated in the Client ID box.
The client application should use this client ID along with the client secret for authentication in
Acumatica ERP.

Related Links

• Connected Applications

To Revoke the Access of a Connected Application

To revoke the access of an OAuth 2.0 or OpenID Connect client application, you use either the
Connected Applications (SM303010) form or the User Profile (SM203010) form.

On the Connected Applications form, you can revoke the access of any application registered in the
current company. On this form, you revoke all access granted to the application.

On the User Profile form, you can revoke the access of any application to which you (that is, the user
account to which you are logged in) have granted access. Any access granted to this application by
other users remains unchanged.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6ca02ea1-884d-4981-9d72-0fa83b40028c
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6ca02ea1-884d-4981-9d72-0fa83b40028c
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=8430c8b2-a79c-4f7b-9768-b0b7fad23a59
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6ca02ea1-884d-4981-9d72-0fa83b40028c
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=8430c8b2-a79c-4f7b-9768-b0b7fad23a59

| Authorizing Client Applications to Work with Acumatica ERP | 36

To Revoke All Access of a Client Application

1. On the System tab, click Integration. In the navigation pane, navigate to Configure >
Connected Applications.

2. In the Client ID box, select the application whose access you want to revoke.

3. On the form toolbar, click Revoke Access.

4. In the message box that opens, click OK to confirm that you want to revoke the access of the
application.

After you have confirmed that you want to revoke access, all access tokens are removed
from the Acumatica ERP database, and these tokens cannot be used to access data in
Acumatica ERP. However, the client secrets remain valid until their expiration dates (if
applicable), and the application can use these secrets to request a new access token.

To Revoke Access You Have Provided

1. In the info area (in the upper-right corner of the screen), click your user name, and then click
User Profile.

2. On the toolbar of the User Profile form, which opens, click View Connected Applications.
The list of applications to which you have granted access is displayed on the Client Application
Permissions webpage.

3. For the application whose access you want to revoke, click Revoke Access.

After you have revoked access, the access tokens that were created when you granted
access to the application are removed from the Acumatica ERP database, and these
tokens cannot be used to access data in Acumatica ERP. However, the client secrets
remain valid until their expiration dates (if applicable), and the application can use these
secrets to request a new access token.

| Configuring the Contract-Based REST and SOAP API | 37

Configuring the Contract-Based REST and SOAP
API

Acumatica ERP provides web services for integration with external systems. Through the web services
of Acumatica ERP, external systems can get data records from Acumatica ERP, process these records,
and save new or updated records to Acumatica ERP.

To access these web services, you can use the contract-based representational state transfer (REST)
API, the contract-based SOAP application programming interface (API), and the screen-based SOAP
API. In this chapter, you will find the main concepts that are related to the contract-based SOAP API
and the contract-based REST API.

In This Chapter

• Contract-Based Web Services API

• Endpoints and Contracts

• API Entities, Fields, and Actions

• Custom Fields

• Custom Endpoints and Endpoint Extensions

• Naming Rules for Endpoints

• Comparison of Contract Versions

• Comparison of System Endpoints

• To Create a Custom Endpoint

• To Extend an Existing Endpoint

• To Validate an Endpoint

Contract-Based Web Services API

The contract-based web services APIs operate with business logic objects that do not depend on
Acumatica ERP forms or their properties and methods. (In this context, contract-based means based
on the object model the web services API provides.) Each contract of the web service is fixed and does
not change based on system customization, localization, or any other changes made to Acumatica ERP.

For example, suppose that the contract of the web service contains the definition of the CustomerID
field, which accesses the Customer ID element on the Customers (AR303000) form. If you have
changed the name of the Customer ID element to Customer Identifier in a customization project,
the contract of the web service remains fully functional and does not require update; also, your
application requires no further modifications. You can access the Customer Identifier element on the
form through the same CustomerID field.

REST and SOAP Interfaces of the Contract-Based Web Services

You can work with the contract-based web services through either the REST interface or the SOAP
interface.

To use the contract-based REST or SOAP API in your application, first of all, you should decide which
endpoint to use. You can find more information on the endpoints and their contracts in Endpoints and
Contracts.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=652929bc-9606-4056-aa6e-0c2d1147171b

| Configuring the Contract-Based REST and SOAP API | 38

After that, you can use the REST API in your application. For details on the REST API, see Working with
the Contract-Based REST API. For the REST API reference, see Contract-Based REST API Reference.

After you have selected the endpoint, to use the contract-based SOAP API in your application, you
should obtain the WSDL description of the contract of this endpoint, import the WSDL file into your
development environment (as described in To Configure the Client Application), and start developing your
application. You can find the description of the SOAP API methods in Contract-Based SOAP API Reference.

You can find examples of how to use the contract-based SOAP and REST API in the I300 Web Services:
Basic | Data Retrieval, I310 Web Services: Advanced | Data Retrieval, and I320 Web Services: Data
Manipulation training course.

Related Links

• Endpoints and Contracts

• API Entities, Fields, and Actions

Endpoints and Contracts

You access the contract-based REST and SOAP API through endpoints that you configure on the Web
Service Endpoints (SM207060) form.

Endpoints and Contracts

An endpoint is an entry point to the Acumatica ERP web services. For each endpoint that a web service
API provides, a contract of the endpoint defines the entities, with their actions and fields, that are
available through the endpoint and the methods that you can use to work with these entities.

The endpoint is identified by the URL that you use to access the web services API. You can see
the name and version of an endpoint in its URL. For example, the endpoint http://localhost/
AcumaticaDB/entity/Default/18.200.001?wsdl has the version 18.200.001 and the name Default.
The version of an endpoint defines the list of entities, with their actions and fields you can work with
through this endpoint.

The contract of an endpoint is identified by contract version. The version of a contract defines the
list of methods for working with entities that you can use when working with Acumatica ERP through
the endpoint with this version of the contract. For the difference between the contract versions, see
Comparison of Contract Versions.

Contract Version 1 is not supported starting from Acumatica ERP 2018 R2.

System and Custom Endpoints

You can use two types of endpoints to access the web services:

• System endpoint: The system endpoints are precofigured in the system and have the Default
name. Each of these endpoints has a predefined contract, which includes the API that is
preconfigured in the system. You cannot change the contract of a system endpoint.

If the API that is available in the contract of a system endpoint is sufficient for the requirements of
your application, you should use the system endpoint for accessing Acumatica ERP web services.
You can use the same system endpoint in future versions of Acumatica ERP. For example, if you

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c620452-c947-4bd6-a9eb-2a8fc04226be
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c620452-c947-4bd6-a9eb-2a8fc04226be

| Configuring the Contract-Based REST and SOAP API | 39

use the system endpoint with Version 17.200.001 and Contract Version 3 to access Acumatica ERP
2017 R2, you can use the same endpoint to access future versions of Acumatica ERP.

Acumatica ERP can include endpoints preconfigured in the system that have the names
other than Default. The system uses these endpoints internally. We do not recommend
that you use these endpoints.

• Custom endpoint: By default, there are no custom endpoints in the system. If the API provided
by the system endpoint is not sufficient for the requirements of your application, you can create
a custom endpoint. You can configure the contract of a custom endpoint by adding the needed
elements of the API to the contract.

If you need to use the same custom endpoint in future versions of Acumatica ERP, you should
maintain it in future versions.

The following diagram provides an example of multiple endpoints configured in the system. The
diagram shows two system endpoints with Contract Versions 3 and 4 and two custom endpoints with
the names EastEndpoint and WestEndpoint.

Figure: Contract-based web services

API Entities, Fields, and Actions

The contract of an endpoint defines the following elements of the contract-based web services API:

• Entities: An entity corresponds to a business logic object that you are going to work with. For
example, the contract of a system endpoint includes the Warehouse entity, which represents
a warehouse and holds the data related to the warehouse. This entity is associated with the
Warehouses (IN204000) form.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=264b0ef7-2b6c-40b4-a7d9-f1a5e067939b

| Configuring the Contract-Based REST and SOAP API | 40

For a custom endpoint, if you are going to use an entity to transfer data to or from Acumatica ERP,
you should associate this entity with a particular Acumatica ERP form. For example, you can create
a Vendor entity, which represents a vendor. This entity is associated with the Vendors (AP303000)
form.

• Fields: The fields of an entity correspond to the parameters of a business logic object. For
example, the Warehouse entity that is available through the system endpoint has the Description
and WarehouseID fields, among others. In the contract, these fields are mapped to the
Description and the Warehouse ID elements of the Summary area of the Warehouses form.

For a custom endpoint, if you need to connect the field with a particular element on an Acumatica
ERP form, you should map the field to this element. For example, if you have created the Vendor
entity, which designates a vendor, you can add the field VendorID to the entity and connect this
field with the Vendor ID element of the Summary area of the Vendors form.

• Actions: The actions of an entity correspond to the actions that can be applied to a business logic
object. For example, the TransferOrder entity, which is available through the system endpoint,
has the ReleaseTransferOrder action. This action corresponds to the Release button on the form
toolbar of the Transfers (IN304000) form.

For a custom endpoint, if you need to use an Acumatica ERP action, you should add this action to
the contract of the custom endpoint with the needed parameters. For example, suppose you want
to add an action that changes the customer ID of an existing customer, you can add the action
ChangeID and map it to the Change ID action, which is available on the Customers form. The new
action should have one parameter, which specifies the new ID of a customer as the Change ID
action has.

When you add a new entity to a contract, you should specify the type of the entity, which can be one of
the following:

• Top-Level: Entities of this type are the main entities of the contract. A top-level entity usually
corresponds to an Acumatica ERP form. For example, the Warehouse entity of the contract of the
system endpoint is a top-level entity that corresponds to the Warehouses form.

• Detail: Detail entities correspond to the detail lines of a master-detail form. A detail entity exists
only as a part of a top-level entity. For example, the top-level entity SalesOrder of the contract
of the system endpoint contains the detail entity SalesOrderDetail, which corresponds to a detail
line on the Document Details tab of the Sales Orders (SO301000) form, as shown in the following
screenshot.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=a9584be3-f2bd-4d67-80d4-8041d809df56
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=264b0ef7-2b6c-40b4-a7d9-f1a5e067939b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=a9584be3-f2bd-4d67-80d4-8041d809df56
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ea1539b6-fafa-443e-8b49-cd1ced95389f
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=652929bc-9606-4056-aa6e-0c2d1147171b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=264b0ef7-2b6c-40b4-a7d9-f1a5e067939b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5

| Configuring the Contract-Based REST and SOAP API | 41

Figure: Detail entity

• Linked: Linked entities are supplementary entities of a contract. A linked entity usually corresponds
to a part of an Acumatica ERP form and is related to one top-level entity of the contract or multiple
such entities. For example, the top-level entity Contact of the contract of the system endpoint
contains the linked entity Address, which corresponds to the Address group of fields on the
Details tab of the Contacts (CR302000) form, as shown in the following screenshot.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=75a5dea9-d640-4b71-95b1-88534c4afad7

| Configuring the Contract-Based REST and SOAP API | 42

Figure: Linked entity

Custom Fields

You can work with the values of the custom fields that are not included in the entity definition.

Custom fields can correspond to the following elements:

• The predefined elements on an Acumatica ERP form that are not included in the entity
definition

• The elements that were added to the Acumatica ERP form in a customization project

• The user-defined fields

To work with the needed custom field, you need to know the name of the data view that contains the
corresponding custom element and the name of the field, which are described in detail below.

Field Name and View Name

A field name is the internal name of a particular element of an Acumatica ERP form. A view name is the
name of the data view to which a particular element belongs. For example, the Posting Class element

| Configuring the Contract-Based REST and SOAP API | 43

on the General Settings tab of the Stock Items (IN202500) form has the PostClassID field name and
belong to the ItemSettings data view.

To find out the field name and view name, on the title bar of the form, you click Customization >
Inspect Element and click the needed element on the form. In the Element Properties dialog box,
which opens, you find the field name in the Data Field element and the view name in the View Name
element, as shown in the following screenshot.

Figure: Field name and view name

In the contract-based REST API, you can also find out the field name and the view name through the
special URL. For details on the URL and the HTTP method, see Retrieval of the Schema of Custom Fields.

In the contract-based SOAP API, you can find out the field name and the view name in code by using
the GetCustomFieldSchema() method. For details on the method, see GetCustomFieldSchema() Method.

Field Name and View Name of a User-Defined Field

For any user-defined field, the view name is Document. The field name is Attribute<AttributeID>,
where you replace <AttributeID> with the ID of the attribute that corresponds to the user-defined
field.

For example, suppose that on the Sales Orders (SO301000) form, you have added a user-defined field
for the OPERATSYST attribute. You work with this user-defined field by using the Document view name
and the AttributeOPERATSYST field name.

Use of Custom Fields

For details on retrieving the values of custom fields by using the contract-based REST API, see the
description of the $custom parameter in Parameters for Retrieving Records. For details on specifying the
values of custom fields, see Representation of a Record in JSON Format.

For details on working with custom elements through the contract-based SOAP API, see CustomFields
Property.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5

| Configuring the Contract-Based REST and SOAP API | 44

Custom Endpoints and Endpoint Extensions

If the API provided by the system endpoint of Acumatica ERP is not sufficient for the requirements of
your application, you can create a custom endpoint from scratch or by extending an existing endpoint.

An Extension of an Existing Endpoint

If you are creating an endpoint as an extension of an existing endpoint, for the API elements that
were inherited from the base endpoint, you cannot edit the names and types of the entities and fields,
and the names, types, and parameters of the actions. In the contract of the new endpoint, you can
add new top-level entities, new fields or entities to any entity, and new actions. Then you can use
both the API that you added to the contract of the endpoint and the API of the base endpoint in your
application. For information on how to extend an existing endpoint, see To Extend an Existing Endpoint.

The new endpoint that was created as an extension of an existing endpoint has the version of the
contract of the base endpoint; that is, the API methods for working with entities are the same for the
base endpoint and the new endpoint. See Contract-Based REST API Reference and Contract-Based SOAP
API Reference for the description of the API methods of the needed contract version.

An Endpoint Created from Scratch

If you are creating an endpoint from scratch, you should add the needed elements of the API to the
contract. Then you can use these API elements in your application. For information on how to create an
endpoint from scratch, see To Create a Custom Endpoint.

The new endpoint that is created from scratch always has the latest version of the contract. For the
description of the API methods for working with entities that are available in the latest version of the
contract, see Contract-Based REST API Reference.

Related Links

• Comparison of Contract Versions

Naming Rules for Endpoints

When you create a custom endpoint on the Web Service Endpoints (SM207060) form (either from
scratch or by extending a system endpoint), for the names of the entities, fields, actions, and action
parameters of the endpoint, and the endpoint name and version, you should make sure to adhere to
the following rules:

• The name of the endpoint can contain only English letters, digits, underscores, and periods, and
cannot start with a digit.

• The version of the endpoint can contain only English letters, digits, underscores, and periods.

• The name of the entity, field, action, or action parameter can contain only English letters, digits,
and underscores, and cannot start with a digit.

• The name of the field cannot match any of the following reserved names:

• ID

• RowNumber

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c620452-c947-4bd6-a9eb-2a8fc04226be

| Configuring the Contract-Based REST and SOAP API | 45

• Note

• Delete

• CustomFields

• ReturnBehavior

• Entity

• Action

• The name of the field must be unique among the names of the fields of the entity.

• The name of the parameter must be unique among the names of the parameters of the action.

• The name of the entity or action must be unique among the names of the entities and actions of
the endpoint.

The system checks whether the names used in the endpoint satisfy these rules each time you enter the
name of a new entity, field, action, or action parameter. You can also validate the endpoint manually,
as described in To Validate an Endpoint.

Related Links

• To Validate an Endpoint

Comparison of Contract Versions

Acumatica ERP 2020 R2 supports three versions of system contracts. In this topic, you can learn the
main differences between the contract versions.

Contract Version 1 is not supported starting from Acumatica ERP 2018 R2.

Table: Comparison of Contract Versions

Characteristic Contract Ver-
sion 2

Contract Ver-
sion 3

Contract Ver-
sion 4

The REST API is supported for the endpoints with
this contract version.

Yes Yes Yes

The SOAP API is supported for the endpoints with
this contract version.

Yes Yes No

You can specify particular fields of the entity to
be returned from the system.

Yes Yes Yes

By default, the system returns all fields of the en-
tity (including fields of the linked and detail enti-
ties defined within the entity).

For the SOAP
API: Yes

For the REST
API: No

No No

| Configuring the Contract-Based REST and SOAP API | 46

Characteristic Contract Ver-
sion 2

Contract Ver-
sion 3

Contract Ver-
sion 4

Through the endpoint, you can work with the el-
ements that were added to the Acumatica ERP
form in a customization project.

Yes Yes Yes

Through the endpoint, you can work with the pre-
defined elements on an Acumatica ERP form that
are not included in the entity definition.

Yes Yes Yes

When optimization for speed of the retrieval of
the list of records fails, the system behaves as
follows.

The system re-
trieves data in
an unoptimized
way (slow).

The system re-
turns an error.

The system re-
turns an error.

Custom endpoints created from scratch have this
contract version.

No No Yes

The system endpoint that has this contract ver-
sion is included in Acumatica ERP 2020 R2.

No Yes (Endpoint
Versions De-
fault/18.200.001
and De-
fault/17.200.001)

Yes (Endpoint
Version De-
fault/20.200.001)

Related Links

• Endpoints and Contracts

Comparison of System Endpoints

Acumatica ERP 2020 R2 supports three system endpoints. In this topic, you can learn about the
differences between these endpoints.

Contract Versions of the Endpoints

The following table specifies the contract versions of the endpoints. For details about the differences
between the contract versions, see Comparison of Contract Versions.

Endpoint Contract Version

Default/20.200.001 4

Default/18.200.001 3

Default/17.200.001 3

The following topics describe the changes made to the Default endpoint as compared to its previous
version:

• Changes to the Entities, Fields, and Actions of the Default/18.200.001 Endpoint as Compared to the
Default/17.200.001 Endpoint

• Changes to the Entities, Fields, and Actions of the Default/20.200.001 Endpoint as Compared to the
Default/18.200.001 Endpoint

| Configuring the Contract-Based REST and SOAP API | 47

Changes to the Entities, Fields, and Actions of the
Default/18.200.001 Endpoint as Compared to the
Default/17.200.001 Endpoint

The following tables contain the new, modified, or removed elements of the Default/18.200.001
endpoint as compared to the Default/17.200.001 endpoint.

Table: New Entities

The entities listed in the following table (except ProFormaInvoice) can be created, retrieved, updated,
and deleted through the standard API methods. ProFormaInvoice can be created only by the
invocation of the RunProjectBilling action of Project.

Entity Related Form Name and ID

AccountGroup Account Groups (PM201000)

Activity Activity (CR306010)

AllocationRule Allocation Rules (PM207500)

ChangeOrder Change Orders (PM308000)

ChangeOrderClass Change Order Classes (PM203000)

CommonTask Common Tasks (PM208030)

CompanyFinancialPeriod Company Financial Calendar (GL201100)

CostCode Cost Codes (PM209500)

ExpenseClaim Expense Claim (EP301000)

ExpenseReceipt Expense Receipt (EP301020)

ExternalCommitment External Commitments (PM209000)

LaborCostRate Labor Cost Rates (PM209900)

ManageFinancialPeriods Manage Financial Periods (GL503000)

ProFormaInvoice Pro Forma Invoices (PM307000)

Project Projects (PM301000)

ProjectBilling Run Project Billing (PM503000)

ProjectBillingRules Billing Rules (PM207000)

ProjectBudget Project Budget (PM309000)

ProjectTask Project Tasks (PM302000)

ProjectTemplate Project Templates (PM208000)

ProjectTemplateTask Project Template Tasks (PM208010)

TimeEntry Time Entry (PM209100)

UnionLocal Union Locals (PM209700)

WorkClassCompensationCode Work Class Compensation Codes (PM209800)

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=94a2cdce-c36a-49a1-b572-9cd33cb5fa73
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-4450-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0d2e40ad-7ecf-4937-b2bd-dab1d800e0db
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0c26a0eb-ef8d-4a61-97c8-237aea21cf25
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=fdac3e07-8ea5-4c44-85bc-bae8850df2f0
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=3120e8d8-b803-4b08-a0ad-6f04d77343f3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=65ec8509-a3de-4381-94f0-c5ae2f8546fb
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=3bcc9979-ef23-4331-8590-19edc8babe83
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19413b5d-8c8c-415a-a39c-8a773123364f
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=cf897624-9d78-4a83-9c03-e8170b9f9d5f
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=08e48343-6757-47a0-a766-4a845843fdf9
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=3bcc9979-ef23-4331-0598-19edc8babe03
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=eedf2adf-6ddc-4c33-932b-de60275c547f
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=37f1ed00-a7d7-4161-9307-1337662b8550
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=81c86417-3bde-444b-8f1c-682928d31a0c
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=1a586da4-beaa-4015-8834-b2eb87a21fc9
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6773c79b-216e-4725-b28c-3ce724d9a7c9
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=38eaf3fc-1d95-43f7-9014-d917b58fd8b8
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=97a58591-40d8-4edf-a9ad-896d633d6980
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=11e7c776-03fb-405d-a1f4-26700dd319fc
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=70efdc85-fb54-4c39-add2-74abde2dba57
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-2222-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=3bcc9979-ef23-4331-9085-19edc8babe83
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=3bcc9979-ef23-4331-9085-babe1111edc8

| Configuring the Contract-Based REST and SOAP API | 48

Table: Changed Entities

Entity Related Form Name and ID Change

Email.TimeActivity Email Activity (CR306015) The object name has been
changed from EmailTimeActiv-
ity to TimeActivity.

Employee Employees (EP203000) The mapping of the entity has
been completely changed.

Table: New Fields and Actions

Field or Action Name Related Form Name and ID

AccountLocation.Address.Validated Account Locations (CR303010)

Bill.Details.CalculateDiscountsOnImport Bills and Adjustments (AP301000)

Bill.Details.CostCode Bills and Adjustments (AP301000)

Bill.Details.InventoryID Bills and Adjustments (AP301000)

Bill.Details.POLine Bills and Adjustments (AP301000)

Bill.Details.POReceiptLine Bills and Adjustments (AP301000)

Bill.Details.POReceiptNbr Bills and Adjustments (AP301000)

Bill.Project Bills and Adjustments (AP301000)

BusinessAccount.Activities.NoteID Business Accounts (CR303000)

BusinessAccount.LastModifiedDateTime Business Accounts (CR303000)

BusinessAccount.MainAddress.Validated Business Accounts (CR303000)

BusinessAccount.ShippingAddress.Validated Business Accounts (CR303000)

Case.Activities.CostCode Cases (CR306000)

Case.Activities.NoteID Cases (CR306000)

CashSale.Details.CostCode Cash Sales (AR304000)

CashSale.Details.ProjectTask Cash Sales (AR304000)

CashSale.Project Cash Sales (AR304000)

Contact.Activities.NoteID Contacts (CR302000)

Contact.Address.Validated Contacts (CR302000)

Contact.LastModifiedDateTime Contacts (CR302000)

Email.TimeActivity.CostCode Email Activity (CR306015)

FinancialPeriod.Details.Status Master Financial Calendar
(GL201000)

JournalTransaction.Details.CostCode Journal Transactions (GL301000)

JournalTransaction.Details.IsNonPM Journal Transactions (GL301000)

JournalTransaction.Details.ProjectTransactionID Journal Transactions (GL301000)

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5f2ec363-ec67-4dce-ae28-1158b6dd8ef3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=dae5144b-49b3-43a4-bce0-93f31b3f2321
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c5ea5417-5461-438a-b9bf-191c6d554798
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=956b4e51-3078-4d2d-85b3-65c080d95234
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=956b4e51-3078-4d2d-85b3-65c080d95234
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=956b4e51-3078-4d2d-85b3-65c080d95234
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=956b4e51-3078-4d2d-85b3-65c080d95234
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=956b4e51-3078-4d2d-85b3-65c080d95234
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=956b4e51-3078-4d2d-85b3-65c080d95234
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=956b4e51-3078-4d2d-85b3-65c080d95234
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=823f9e2c-d352-4cf4-bbb9-ce6464fecc75
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=823f9e2c-d352-4cf4-bbb9-ce6464fecc75
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=823f9e2c-d352-4cf4-bbb9-ce6464fecc75
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=823f9e2c-d352-4cf4-bbb9-ce6464fecc75
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=a492a091-9649-4826-bcc3-dccdf8765efd
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=a492a091-9649-4826-bcc3-dccdf8765efd
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f8e8a35f-4de7-40c0-8030-ebf9f7910119
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f8e8a35f-4de7-40c0-8030-ebf9f7910119
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f8e8a35f-4de7-40c0-8030-ebf9f7910119
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=75a5dea9-d640-4b71-95b1-88534c4afad7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=75a5dea9-d640-4b71-95b1-88534c4afad7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=75a5dea9-d640-4b71-95b1-88534c4afad7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5f2ec363-ec67-4dce-ae28-1158b6dd8ef3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d46a8e03-b211-44c2-b17c-01ae813ead1b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=dda046bc-5946-407f-88f7-1c0c966fbe72
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=dda046bc-5946-407f-88f7-1c0c966fbe72
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=dda046bc-5946-407f-88f7-1c0c966fbe72

| Configuring the Contract-Based REST and SOAP API | 49

Field or Action Name Related Form Name and ID

InventoryReceipt.Details.CostCode Receipts (IN301000)

InventoryReceipt.Details.Project Receipts (IN301000)

InventoryReceipt.Details.ProjectTask Receipts (IN301000)

Invoice.Details.CalculateDiscountsOnImport Invoices and Memos (AR301000)

Invoice.Details.CostCode Invoices and Memos (AR301000)

Invoice.DiscountDetails Invoices and Memos (AR301000)

Lead.Activities.NoteID Leads (CR301000)

Lead.Address.Validated Leads (CR301000)

Opportunity.Activities.NoteID Opportunities (CR304000)

Opportunity.Address.Validated Opportunities (CR304000)

Payment.PaymentLoadDocuments Payments and Applications
(AR302000)

Payment.PaymentLoadOrders Payments and Applications
(AR302000)

PhysicalInventoryReview.CreatedDateTime Payments and Applications
(AR302000)

ProjectTransaction.Details.Billed Project Transactions (PM304000)

ProjectTransaction.Details.CostCode Project Transactions (PM304000)

ProjectTransaction.Details.ExternalRefNbr Project Transactions (PM304000)

ProjectTransaction.ReleaseTransactions Project Transactions (PM304000)

PurchaseOrder.Branch Purchase Orders (PO301000)

PurchaseOrder.Details.CalculateDiscountsOnImport Purchase Orders (PO301000)

PurchaseOrder.Details.CostCode Purchase Orders (PO301000)

PurchaseOrder.Details.Project Purchase Orders (PO301000)

PurchaseOrder.Details.ProjectTask Purchase Orders (PO301000)

PurchaseOrder.EnterAPBill Purchase Orders (PO301000)

PurchaseOrder.EnterPOReceipt Purchase Orders (PO301000)

PurchaseOrder.LastModifiedDateTime Purchase Orders (PO301000)

PurchaseOrder.Project Purchase Orders (PO301000)

PurchaseOrder.ShippingInstructions.ShipToAddress.Vali-
dated

Purchase Orders (PO301000)

PurchaseOrder.TaxDetails Purchase Orders (PO301000)

PurchaseOrder.Terms Purchase Orders (PO301000)

PurchaseOrder.VendorTaxZone Purchase Orders (PO301000)

PurchaseReceipt.BillDate Purchase Receipts (PO302000)

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d6ecad5b-155f-44bf-baba-9ed006d298b5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d6ecad5b-155f-44bf-baba-9ed006d298b5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d6ecad5b-155f-44bf-baba-9ed006d298b5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5e6f3b27-b7af-412f-a40a-1d4f4be70cba
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5e6f3b27-b7af-412f-a40a-1d4f4be70cba
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5e6f3b27-b7af-412f-a40a-1d4f4be70cba
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ce564fa0-baca-4d9b-97a8-ec69910de4c2
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ce564fa0-baca-4d9b-97a8-ec69910de4c2
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5cb49cd5-2be8-4617-9341-958f1c5d6d53
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5cb49cd5-2be8-4617-9341-958f1c5d6d53
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ae844bf4-1aef-42cd-9e2f-49b3ee1bc8d7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ae844bf4-1aef-42cd-9e2f-49b3ee1bc8d7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ae844bf4-1aef-42cd-9e2f-49b3ee1bc8d7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=382a97fe-b636-44ca-9798-6d478c05b687
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=382a97fe-b636-44ca-9798-6d478c05b687
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=382a97fe-b636-44ca-9798-6d478c05b687
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=382a97fe-b636-44ca-9798-6d478c05b687
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5565686c-96c4-4bfa-a51d-9a2566baa808
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5565686c-96c4-4bfa-a51d-9a2566baa808
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5565686c-96c4-4bfa-a51d-9a2566baa808
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5565686c-96c4-4bfa-a51d-9a2566baa808
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5565686c-96c4-4bfa-a51d-9a2566baa808
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5565686c-96c4-4bfa-a51d-9a2566baa808
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5565686c-96c4-4bfa-a51d-9a2566baa808
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5565686c-96c4-4bfa-a51d-9a2566baa808
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5565686c-96c4-4bfa-a51d-9a2566baa808
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5565686c-96c4-4bfa-a51d-9a2566baa808
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5565686c-96c4-4bfa-a51d-9a2566baa808
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5565686c-96c4-4bfa-a51d-9a2566baa808
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5565686c-96c4-4bfa-a51d-9a2566baa808
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19

| Configuring the Contract-Based REST and SOAP API | 50

Field or Action Name Related Form Name and ID

PurchaseReceipt.Branch Purchase Receipts (PO302000)

PurchaseReceipt.CreateAPBill Purchase Receipts (PO302000)

PurchaseReceipt.Description Purchase Receipts (PO302000)

PurchaseReceipt.TransferOrderNbr Purchase Receipts (PO302000)

PurchaseReceipt.TransferOrderType Purchase Receipts (PO302000)

PurchaseReceipt.TransferShipmentNbr Purchase Receipts (PO302000)

PurchaseReceipt.UnbilledQuantity Purchase Receipts (PO302000)

PurchaseReceipt.Warehouse Purchase Receipts (PO302000)

SalesInvoice.ApplicationsCreditMemo Invoices (SO303000)

SalesInvoice.ApplicationsInvoice Invoices (SO303000)

SalesInvoice.BillToSettings.BillToAddress.Validated Invoices (SO303000)

SalesInvoice.BillToSettings.CustomerLocation Invoices (SO303000)

SalesInvoice.CashDiscount Invoices (SO303000)

SalesInvoice.Commissions Invoices (SO303000)

SalesInvoice.CreditHold Invoices (SO303000)

SalesInvoice.Currency Invoices (SO303000)

SalesInvoice.Details.CostCode Invoices (SO303000)

SalesInvoice.Details.ProjectTask Invoices (SO303000)

SalesInvoice.Details.CalculateDiscountsOnImport Invoices (SO303000)

SalesInvoice.Details.DiscountAmount Invoices (SO303000)

SalesInvoice.Details.DiscountPercent Invoices (SO303000)

SalesInvoice.Details.ExpirationDate Invoices (SO303000)

SalesInvoice.Details.InventoryDocType Invoices (SO303000)

SalesInvoice.Details.InventoryRefNbr Invoices (SO303000)

SalesInvoice.Details.Location Invoices (SO303000)

SalesInvoice.Details.LotSerialNbr Invoices (SO303000)

SalesInvoice.Details.ManualDiscount Invoices (SO303000)

SalesInvoice.Details.OrderLineNbr Invoices (SO303000)

SalesInvoice.Details.OrigInvLineNbr Invoices (SO303000)

SalesInvoice.Details.OrigInvNbr Invoices (SO303000)

SalesInvoice.Details.OrigInvType Invoices (SO303000)

SalesInvoice.Details.Subitem Invoices (SO303000)

SalesInvoice.Details.TaxCategory Invoices (SO303000)

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a

| Configuring the Contract-Based REST and SOAP API | 51

Field or Action Name Related Form Name and ID

SalesInvoice.Details.TransactionDescr Invoices (SO303000)

SalesInvoice.Details.WarehouseID Invoices (SO303000)

SalesInvoice.DiscountDetails Invoices (SO303000)

SalesInvoice.FinancialDetails Invoices (SO303000)

SalesInvoice.Project Invoices (SO303000)

SalesInvoice.SalesInvoiceAddOrder Invoices (SO303000)

SalesInvoice.SalesInvoiceAutoApply Invoices (SO303000)

SalesInvoice.TaxDetails Invoices (SO303000)

SalesInvoice.Totals Invoices (SO303000)

SalesInvoice.VATExemptTotal Invoices (SO303000)

SalesInvoice.VATTaxableTotal Invoices (SO303000)

SalesOrder.AutoRecalculateDiscounts Sales Orders (SO301000)

SalesOrder.BillToAddress.Validated Sales Orders (SO301000)

SalesOrder.Details.CalculateDiscountsOnImport Sales Orders (SO301000)

SalesOrder.Details.CostCode Sales Orders (SO301000)

SalesOrder.DisableAutomaticDiscountUpdate Sales Orders (SO301000)

SalesOrder.DiscountDetails.Description Sales Orders (SO301000)

SalesOrder.DiscountDetails.ExternalDiscountCode Sales Orders (SO301000)

SalesOrder.OpenSalesOrder Sales Orders (SO301000)

SalesOrder.PaymentProfileID Sales Orders (SO301000)

SalesOrder.ReleaseFromCreditHoldSalesOrder Sales Orders (SO301000)

SalesOrder.SalesOrderAddInvoice Sales Orders (SO301000)

SalesOrder.SalesOrderAddStockItem Sales Orders (SO301000)

SalesOrder.SalesOrderCreatePurchaseOrder Sales Orders (SO301000)

SalesOrder.SalesOrderCreateReceipt Sales Orders (SO301000)

SalesOrder.SalesOrderCreateShipment Sales Orders (SO301000)

SalesOrder.ShipToAddress.Validated Sales Orders (SO301000)

Shipment.PrepareInvoice Shipments (SO302000)

Shipment.ShipToSettings.ShipToAddress.Validated Shipments (SO302000)

Task.RelatedActivities.NoteID Task (CR306020)

Task.TimeActivity.CostCode Task (CR306020)

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f47cffcc-543e-469c-a204-a9c1e3da346d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f47cffcc-543e-469c-a204-a9c1e3da346d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6449513c-254e-4093-b7b8-06de0108c384
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6449513c-254e-4093-b7b8-06de0108c384

| Configuring the Contract-Based REST and SOAP API | 52

Table: Renamed Actions

Action Name in Default/18.200.001 (Action Name in De-
fault/17.200.001)

Related Form Name and ID

Email.CreateContactFromEmail (Email.CreateContactEmail) Email Activity (CR306015)

Email.CreateEventFromEmail (Email.CreateEventEmail) Email Activity (CR306015)

Email.CreateLeadFromEmail (Email.CreateLeadEmail) Email Activity (CR306015)

Email.CreateOpportunityFromEmail (Email.CreateOpportuni-
tyEmail)

Email Activity (CR306015)

Email.CreateExpenseReceiptFromEmail (Email.CreateEx-
penseReceiptEmail)

Email Activity (CR306015)

Email.CreateCaseFromEmail (Email.CreateCaseEmail) Email Activity (CR306015)

Email.CreateTaskFromEmail (Email.CreateTaskEmail) Email Activity (CR306015)

Email.LinkEntityToEmail (Email.SelectRelatedEntityEmail) Email Activity (CR306015)

Event.LinkEntityToEvent (Event.SelectRelatedEntityEvent) Event (CR306030)

Task.LinkEntityToTask (Task.SelectRelatedEntityTask) Task (CR306020)

Table: Removed Fields and Actions

Field or Action Name Related Form Name and ID

Email.SelectSourceEmail Email Activity (CR306015)

FinancialPeriod.Details.Active Master Financial Calendar (GL201000)

FinancialPeriod.Details.ClosedInGL Master Financial Calendar (GL201000)

FinancialPeriod.Details.ClosedInPR Master Financial Calendar (GL201000)

PurchaseReceipt.Details.Project Purchase Receipts (PO302000)

PurchaseReceipt.Details.ProjectTask Purchase Receipts (PO302000)

Changes to the Entities, Fields, and Actions of the
Default/20.200.001 Endpoint as Compared to the
Default/18.200.001 Endpoint

The following tables contain the new, modified, or removed elements of the Default/20.200.001
endpoint as compared to the Default/18.200.001 endpoint.

Table: New Entities

Entity Related Form Name and ID

AccountDetailsForPeriodInquiry Account Details for Period (GL404001)

Budget Budgets (GL302010)

CompaniesStructure Company Branch (CS401000)

Ledger Ledgers (GL201500)

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5f2ec363-ec67-4dce-ae28-1158b6dd8ef3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5f2ec363-ec67-4dce-ae28-1158b6dd8ef3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5f2ec363-ec67-4dce-ae28-1158b6dd8ef3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5f2ec363-ec67-4dce-ae28-1158b6dd8ef3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5f2ec363-ec67-4dce-ae28-1158b6dd8ef3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5f2ec363-ec67-4dce-ae28-1158b6dd8ef3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5f2ec363-ec67-4dce-ae28-1158b6dd8ef3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5f2ec363-ec67-4dce-ae28-1158b6dd8ef3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b273921f-f49a-4011-bb75-08110d951f5f
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6449513c-254e-4093-b7b8-06de0108c384
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5f2ec363-ec67-4dce-ae28-1158b6dd8ef3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d46a8e03-b211-44c2-b17c-01ae813ead1b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d46a8e03-b211-44c2-b17c-01ae813ead1b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d46a8e03-b211-44c2-b17c-01ae813ead1b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4f19354b-f537-4951-814b-43ff7f57febe
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=a5c9f3f5-7dc4-4b1b-a50c-396729a12e4e

| Configuring the Contract-Based REST and SOAP API | 53

Entity Related Form Name and ID

Payment.SalesOrderPayment Payments and Applications (AR302000)

SalesOrder.SalesOrderCreditCardTransac-
tionDetail

Sales Orders (SO301000)

Shipment.ShipmentPackageDetail Shipments (SO302000)

StorageDetailsInquiry Storage Details (IN408050)

StorageDetailsByLocationInquiry Storage Details by Item Warehouse Location
(IN408055)

Task.TaskRelatedActivity Task (CR306020)

ServiceOrder Service Orders (FS300100)

Appointment Appointments (FS300200)

Table: Changed Entities

Entity Related Form Name and ID Change

InventoryAdjustment Adjustments (IN303000) • The Adjustment entity is re-
named to InventoryAdjust-
ment.

• The AdjustmentDetail detail
entity is renamed to Inven-
toryAdjustmentDetail.

AttributeDefinition Attributes (CS205000) The AttributeDetail detail en-
tity is removed. The following
fields are added to the Attrib-
uteValue detail entity:

• AttributeDescription

• RefNoteID

• ValueDescription

These changes affect
many entities.

BusinessAccount Business Accounts (CR303000) • The BusinessAccountActiv-
ityDetail detail entity is re-
moved, the ActivityDetail
is used instead.

• The BusinessAccountMar-
ketingListDetail detail en-
tity is removed, the Market-
ingListDetail detail entity is
used instead.

• Mapping has changed.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ae844bf4-1aef-42cd-9e2f-49b3ee1bc8d7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f47cffcc-543e-469c-a204-a9c1e3da346d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6449513c-254e-4093-b7b8-06de0108c384
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6e5277d3-274e-45f5-b77d-4410ed736d21
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ac486e9c-f5df-4829-94f0-2df8821361a0
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=31ba83fe-8b3a-4d52-a355-edea838b5c8e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=de0a353f-40d0-452d-9152-e65605e69788
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=823f9e2c-d352-4cf4-bbb9-ce6464fecc75

| Configuring the Contract-Based REST and SOAP API | 54

Entity Related Form Name and ID Change

AccountSummaryInquiry Account Summary (GL401000) In the AccountSummaryRow de-
tail entity the following changes
are made:

• The BeginingBalance field is
renamed to BeginningBal-
ance.

• The CurrencyBeginingBal-
ance field is renamed to Cur-
rencyBeginningBalance.

Case Cases (CR306000) • The CaseActivityDetail de-
tail entity is removed, the Ac-
tivityDetail detail entity is
used instead.

• Mapping has changed.

• The type of the Case.CaseRe-
latedCase.ParentCaseID is
changed.

ChangeOrder Change Orders (PM308000) Mapping has changed.

Contact Contacts (CR302000) Mapping has changed.

Event Event (CR306030) • Mapping has changed.

• The EventRelatedActivity
detail entity is removed, the
ActivityDetail is used in-
stead.

ExpenseReceipt Expense Receipt (EP301020) The type and mapping of the
ReceiptID field are changed.

Lead Leads (CR301000) Mapping has changed.

NonStockItem Non-Stock Items (IN202000) • The type of the Attributes
field is changed.

• Mapping has changed.

Opportunity Opportunities (CR304000) Mapping has changed.

Payment Payments and Applications
(AR302000)

Mapping has changed.

Project Projects (PM301000) Mapping has changed.

TaxReportingSettings Reporting Settings (TX205100) The ReportingSettings enti-
ty is renamed to TaxReport-
ingSettings.

SalesInvoice Invoices (SO303000) Mapping has changed.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f54927e5-fec0-400a-bd19-5581de5aae35
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=a492a091-9649-4826-bcc3-dccdf8765efd
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0c26a0eb-ef8d-4a61-97c8-237aea21cf25
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=75a5dea9-d640-4b71-95b1-88534c4afad7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b273921f-f49a-4011-bb75-08110d951f5f
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=cf897624-9d78-4a83-9c03-e8170b9f9d5f
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ce564fa0-baca-4d9b-97a8-ec69910de4c2
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=bf68dd4f-63d4-460d-8dc0-9152f2bd6bf1
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5cb49cd5-2be8-4617-9341-958f1c5d6d53
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ae844bf4-1aef-42cd-9e2f-49b3ee1bc8d7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=81c86417-3bde-444b-8f1c-682928d31a0c
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=af0480fa-c978-4327-8a65-14cc7b791c4b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a

| Configuring the Contract-Based REST and SOAP API | 55

Entity Related Form Name and ID Change

SalesOrder Sales Orders (SO301000) • The type of the Payments field
is changed.

• Mapping has changed.

Shipment Shipments (SO302000) Mapping has changed.

Task Task (CR306020) • The type of the RelatedAc-
tivities field is changed.

• Mapping has changed.

Table: New Fields and Actions

Field or Action Name Related Form Name and ID

Activity.CreatedByID Activity (CR306010)

Activity.CreatedDateTime Activity (CR306010)

Activity.LastModifiedDateTime Activity (CR306010)

Activity.RelatedEntityType Activity (CR306010)

Activity.RelatedEntityNoteID Activity (CR306010)

Activity.RelatedEntityDescription Activity (CR306010)

Activity.ActivityDetail.Billable Activity (CR306010)

Activity.ActivityDetail.Overtime Activity (CR306010)

Activity.ActivityDetail.BillableOvertime Activity (CR306010)

Activity.ActivityDetail.BillableTime Activity (CR306010)

Activity.ActivityDetail.Category Activity (CR306010)

Activity.ActivityDetail.CostCode Activity (CR306010)

Activity.ActivityDetail.CreatedDateTime Activity (CR306010)

Activity.ActivityDetail.LastModifiedDateTime Activity (CR306010)

Activity.ActivityDetail.CreatedByID Activity (CR306010)

Bill.LastModifiedDateTime Bills and Adjustments (AP301000)

BusinessAccount.NoteID Business Accounts (CR303000)

Carrier.CarrierUnits Carriers (CS207700)

Carrier.Centimeter Carriers (CS207700)

Carrier.Inch Carriers (CS207700)

Carrier.Kilogram Carriers (CS207700)

Carrier.Pound Carriers (CS207700)

Carrier.WarehouseID Carriers (CS207700)

Case.LastModifiedDateTime Cases (CR306000)

Case.NoteID Cases (CR306000)

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f47cffcc-543e-469c-a204-a9c1e3da346d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6449513c-254e-4093-b7b8-06de0108c384
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-4450-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-4450-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-4450-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-4450-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-4450-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-4450-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-4450-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-4450-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-4450-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-4450-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-4450-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-4450-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-4450-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-4450-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-4450-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=956b4e51-3078-4d2d-85b3-65c080d95234
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=823f9e2c-d352-4cf4-bbb9-ce6464fecc75
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=753b8913-fc66-4831-b70e-98c4dafc160e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=753b8913-fc66-4831-b70e-98c4dafc160e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=753b8913-fc66-4831-b70e-98c4dafc160e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=753b8913-fc66-4831-b70e-98c4dafc160e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=753b8913-fc66-4831-b70e-98c4dafc160e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=753b8913-fc66-4831-b70e-98c4dafc160e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=a492a091-9649-4826-bcc3-dccdf8765efd
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=a492a091-9649-4826-bcc3-dccdf8765efd

| Configuring the Contract-Based REST and SOAP API | 56

Field or Action Name Related Form Name and ID

Check.LastModifiedDateTime Checks and Payments (AP302000)

Check.VoidCheck Checks and Payments (AP302000)

Contact.NoteID Contacts (CR302000)

Email.StartDate Email Activity (CR306015)

Email.CreatedByID Email Activity (CR306015)

Email.CreatedDateTime Email Activity (CR306015)

Email.LastModifiedDateTime Email Activity (CR306015)

Email.NoteID Email Activity (CR306015)

Email.RelatedEntityType Email Activity (CR306015)

Email.RelatedEntityNoteID Email Activity (CR306015)

Email.RelatedEntityDescription Email Activity (CR306015)

Event.CreatedByID Event (CR306030)

Event.CreatedDateTime Event (CR306030)

Event.LastModifiedDateTime Event (CR306030)

Event.RelatedEntityType Event (CR306030)

Event.RelatedEntityNoteID Event (CR306030)

Event.RelatedEntityDescription Event (CR306030)

InventoryReceipt.LastModifiedDateTime Receipts (IN301000)

InventoryReceipt.InventoryReceiptDetail.POReceiptNbr Receipts (IN301000)

Invoice.BillToContact Invoices and Memos (AR301000)

Invoice.BillToContactOverride Invoices and Memos (AR301000)

Invoice.ShipToContact Invoices and Memos (AR301000)

Invoice.ShipToContactOverride Invoices and Memos (AR301000)

ItemWarehouse.OverrideProductManager Item Warehouse Details
(IN204500)

KitAssembly.LastModifiedDateTime Kit Assembly (IN307000)

Lead.LastModifiedDateTime Leads (CR301000)

Lead.NoteID Leads (CR301000)

Lead.Active Leads (CR301000)

Lead.Description Leads (CR301000)

Lead.RefContactID Leads (CR301000)

Lead.ConvertedBy Leads (CR301000)

Lead.QualificationDate Leads (CR301000)

Opportunity.LastModifiedDateTime Opportunities (CR304000)

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=81659f97-cb14-4a27-bc3e-0f67b3945613
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=81659f97-cb14-4a27-bc3e-0f67b3945613
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=75a5dea9-d640-4b71-95b1-88534c4afad7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5f2ec363-ec67-4dce-ae28-1158b6dd8ef3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5f2ec363-ec67-4dce-ae28-1158b6dd8ef3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5f2ec363-ec67-4dce-ae28-1158b6dd8ef3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5f2ec363-ec67-4dce-ae28-1158b6dd8ef3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5f2ec363-ec67-4dce-ae28-1158b6dd8ef3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5f2ec363-ec67-4dce-ae28-1158b6dd8ef3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5f2ec363-ec67-4dce-ae28-1158b6dd8ef3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5f2ec363-ec67-4dce-ae28-1158b6dd8ef3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b273921f-f49a-4011-bb75-08110d951f5f
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b273921f-f49a-4011-bb75-08110d951f5f
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b273921f-f49a-4011-bb75-08110d951f5f
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b273921f-f49a-4011-bb75-08110d951f5f
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b273921f-f49a-4011-bb75-08110d951f5f
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b273921f-f49a-4011-bb75-08110d951f5f
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d6ecad5b-155f-44bf-baba-9ed006d298b5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d6ecad5b-155f-44bf-baba-9ed006d298b5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5e6f3b27-b7af-412f-a40a-1d4f4be70cba
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5e6f3b27-b7af-412f-a40a-1d4f4be70cba
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5e6f3b27-b7af-412f-a40a-1d4f4be70cba
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5e6f3b27-b7af-412f-a40a-1d4f4be70cba
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ae2418af-7f53-4c09-8766-556452d8f8b8
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=dbeb6a3a-153e-4731-bb21-850cd124bfa4
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ce564fa0-baca-4d9b-97a8-ec69910de4c2
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ce564fa0-baca-4d9b-97a8-ec69910de4c2
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ce564fa0-baca-4d9b-97a8-ec69910de4c2
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ce564fa0-baca-4d9b-97a8-ec69910de4c2
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ce564fa0-baca-4d9b-97a8-ec69910de4c2
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ce564fa0-baca-4d9b-97a8-ec69910de4c2
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ce564fa0-baca-4d9b-97a8-ec69910de4c2
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5cb49cd5-2be8-4617-9341-958f1c5d6d53

| Configuring the Contract-Based REST and SOAP API | 57

Field or Action Name Related Form Name and ID

Opportunity.NoteID Opportunities (CR304000)

Payment.Branch Payments and Applications
(AR302000)

Payment.LastModifiedDateTime Payments and Applications
(AR302000)

Payment.ProcessingCenterID Payments and Applications
(AR302000)

Payment.SaveCard Payments and Applications
(AR302000)

Payment.CreditCardTransactionInfo Payments and Applications
(AR302000)

Payment.PaymentDetail.CashDiscountTaken Payments and Applications
(AR302000)

PurchaseOrder.BaseCurrencyID Purchase Orders (PO301000)

PurchaseOrder.CurrencyEffectiveDate Purchase Orders (PO301000)

PurchaseOrder.CurrencyRate Purchase Orders (PO301000)

PurchaseOrder.CurrencyRateTypeID Purchase Orders (PO301000)

PurchaseOrder.CurrencyReciprocalRate Purchase Orders (PO301000)

PurchaseReceipt.BaseCurrencyID Purchase Receipts (PO302000)

PurchaseReceipt.CurrencyEffectiveDate Purchase Receipts (PO302000)

PurchaseReceipt.CurrencyRate Purchase Receipts (PO302000)

PurchaseReceipt.CurrencyRateTypeID Purchase Receipts (PO302000)

PurchaseReceipt.CurrencyReciprocalRate Purchase Receipts (PO302000)

PurchaseReceipt.Location Purchase Receipts (PO302000)

PurchaseReceipt.ProcessReturnWithOriginalCost Purchase Receipts (PO302000)

PurchaseReceipt.TotalCost Purchase Receipts (PO302000)

PurchaseReceipt.PurchaseReceiptDetail.EditableUnitCost Purchase Receipts (PO302000)

PurchaseReceipt.PurchaseReceiptDetail.EstimatedINExtend-
edCost

Purchase Receipts (PO302000)

PurchaseReceipt.PurchaseReceiptDetail.ExtendedCost Purchase Receipts (PO302000)

PurchaseReceipt.PurchaseReceiptDetail.FinalINExtended-
Cost

Purchase Receipts (PO302000)

PurchaseReceipt.PurchaseReceiptDetail.POReceiptLineNbr Purchase Receipts (PO302000)

PurchaseReceipt.PurchaseReceiptDetail.POReceiptNbr Purchase Receipts (PO302000)

PurchaseReceipt.PurchaseReceiptDetail.TransferOrderLi-
neNbr

Purchase Receipts (PO302000)

SalesInvoice.DetailTotal Invoices (SO303000)

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5cb49cd5-2be8-4617-9341-958f1c5d6d53
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ae844bf4-1aef-42cd-9e2f-49b3ee1bc8d7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ae844bf4-1aef-42cd-9e2f-49b3ee1bc8d7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ae844bf4-1aef-42cd-9e2f-49b3ee1bc8d7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ae844bf4-1aef-42cd-9e2f-49b3ee1bc8d7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ae844bf4-1aef-42cd-9e2f-49b3ee1bc8d7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ae844bf4-1aef-42cd-9e2f-49b3ee1bc8d7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5565686c-96c4-4bfa-a51d-9a2566baa808
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5565686c-96c4-4bfa-a51d-9a2566baa808
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5565686c-96c4-4bfa-a51d-9a2566baa808
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5565686c-96c4-4bfa-a51d-9a2566baa808
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5565686c-96c4-4bfa-a51d-9a2566baa808
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a

| Configuring the Contract-Based REST and SOAP API | 58

Field or Action Name Related Form Name and ID

SalesInvoice.DiscountTotal Invoices (SO303000)

SalesInvoice.FreightPrice Invoices (SO303000)

SalesInvoice.PaymentTotal Invoices (SO303000)

SalesInvoice.TaxTotal Invoices (SO303000)

SalesOrder.SalesOrderDetail.Amount Sales Orders (SO301000)

Shipment.CreateNewShipmentForEveryOrder Shipments (SO302000)

Shipment.Description Shipments (SO302000)

Shipment.OverrideFreightPrice Shipments (SO302000)

Shipment.FreightCurrencyID Shipments (SO302000)

Shipment.Picked Shipments (SO302000)

Shipment.ShipmentPackage.PackageContents Shipments (SO302000)

Shipment.ShippingSettings.Freight Shipments (SO302000)

Shipment.ShippingSettings.FreightCost Shipments (SO302000)

Shipment.ShippingSettings.FreightCostIsuptodate Shipments (SO302000)

Shipment.ShippingSettings.FreightTaxCategory Shipments (SO302000)

Shipment.ShippingSettings.OrderVolume Shipments (SO302000)

Shipment.ShippingSettings.OrderWeight Shipments (SO302000)

Shipment.ShippingSettings.PackageWeight Shipments (SO302000)

Shipment.ShippingSettings.PremiumFreight Shipments (SO302000)

Task.CreatedByID Task (CR306020)

Task.CreatedDateTime Task (CR306020)

Task.LastModifiedDateTime Task (CR306020)

Task.RelatedEntityType Task (CR306020)

Task.RelatedEntityNoteID Task (CR306020)

Task.RelatedEntityDescription Task (CR306020)

TransferOrder.LastModifiedDateTime Transfers (IN304000)

Table: Removed Entities

Field or Action Name Related Form Name and ID

AccountByPeriodInquiry Account by Period (GL402000)

AccountBySubaccountInquiry Account by Subaccount (GL403000)

AccountDetailsInquiry Account Details (GL404000)

AccountLocation Account Locations (CR303010)

InterBranchAccountMapping Inter-Branch Account Mapping (GL101010)

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f47cffcc-543e-469c-a204-a9c1e3da346d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f47cffcc-543e-469c-a204-a9c1e3da346d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f47cffcc-543e-469c-a204-a9c1e3da346d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f47cffcc-543e-469c-a204-a9c1e3da346d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f47cffcc-543e-469c-a204-a9c1e3da346d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f47cffcc-543e-469c-a204-a9c1e3da346d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f47cffcc-543e-469c-a204-a9c1e3da346d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f47cffcc-543e-469c-a204-a9c1e3da346d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f47cffcc-543e-469c-a204-a9c1e3da346d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f47cffcc-543e-469c-a204-a9c1e3da346d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f47cffcc-543e-469c-a204-a9c1e3da346d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f47cffcc-543e-469c-a204-a9c1e3da346d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f47cffcc-543e-469c-a204-a9c1e3da346d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f47cffcc-543e-469c-a204-a9c1e3da346d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6449513c-254e-4093-b7b8-06de0108c384
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6449513c-254e-4093-b7b8-06de0108c384
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6449513c-254e-4093-b7b8-06de0108c384
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6449513c-254e-4093-b7b8-06de0108c384
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6449513c-254e-4093-b7b8-06de0108c384
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6449513c-254e-4093-b7b8-06de0108c384
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ea1539b6-fafa-443e-8b49-cd1ced95389f
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4663fd6c-13a0-4041-babb-bfc48e02c447
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=7a99440b-f106-4482-b1f7-76e210ff4102
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=517044d6-d4e9-406b-a40e-6139b9b53bd9
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c5ea5417-5461-438a-b9bf-191c6d554798
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=858e6eba-172d-46fa-879e-d6f69f5b190c

| Configuring the Contract-Based REST and SOAP API | 59

Field or Action Name Related Form Name and ID

JournalVoucher Journal Vouchers (GL304000)

ManageFinancialPeriods Manage Financial Periods (GL503000)

Payment.Payments Payments and Applications (AR302000)

SalesInvoice.SalesInvoiceTotals Invoices (SO303000)

VoucherEntryCode Voucher Entry Codes (GL106000)

Table: Removed Fields and Actions

Field or Action Name Related Form Name and ID

Activity.RelatedEntityDescription Activity (CR306010)

Activity.LinkEntityToActivity Activity (CR306010)

Activity.ActivityDetail.ClassIcon Activity (CR306010)

Activity.ActivityDetail.CreatedAt Activity (CR306010)

Activity.ActivityDetail.CreatorID Activity (CR306010)

Activity.ActivityDetail.CreatorUsername Activity (CR306010)

Activity.ActivityDetail.IsCompleteIcon Activity (CR306010)

Activity.ActivityDetail.PriorityIcon Activity (CR306010)

Activity.ActivityDetail.ReminderIcon Activity (CR306010)

BusinessAccount.ConvertBusinessAccount-
ToVendor

Business Accounts (CR303000)

Carrier.CarrierUnitOfWeight Carriers (CS207700)

Carrier.UOM Carriers (CS207700)

Contact.ConvertContactToBusinessAccount Contacts (CR302000)

Contact.CloseContactAsDuplicate Contacts (CR302000)

Email.Date Email Activity (CR306015)

Email.RelatedEntityDescription Email Activity (CR306015)

Email.StartTime Email Activity (CR306015)

Email.DownloadEmlFileEmail Email Activity (CR306015)

Email.LinkEntityToEmail Email Activity (CR306015)

Event.RelatedEntityDescription Event (CR306030)

Event.StartTime Event (CR306030)

Event.CompleteAndFollowUpEvent Event (CR306030)

Event.LinkEntityToEvent Event (CR306030)

FinancialPeriod.GeneratePeriods Master Financial Calendar (GL201000)

Invoice.ReverseInvoice Invoices and Memos (AR301000)

Lead.CloseLeadAsDuplicate Leads (CR301000)

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=a1c8c3cf-9874-450f-8082-c00af1f194f3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=eedf2adf-6ddc-4c33-932b-de60275c547f
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ae844bf4-1aef-42cd-9e2f-49b3ee1bc8d7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=e5d240a8-3eb9-4a73-8af5-75982bb7a6d5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-4450-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-4450-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-4450-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-4450-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-4450-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-4450-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-4450-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-4450-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-4450-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=823f9e2c-d352-4cf4-bbb9-ce6464fecc75
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=753b8913-fc66-4831-b70e-98c4dafc160e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=753b8913-fc66-4831-b70e-98c4dafc160e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=75a5dea9-d640-4b71-95b1-88534c4afad7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=75a5dea9-d640-4b71-95b1-88534c4afad7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5f2ec363-ec67-4dce-ae28-1158b6dd8ef3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5f2ec363-ec67-4dce-ae28-1158b6dd8ef3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5f2ec363-ec67-4dce-ae28-1158b6dd8ef3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5f2ec363-ec67-4dce-ae28-1158b6dd8ef3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5f2ec363-ec67-4dce-ae28-1158b6dd8ef3
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b273921f-f49a-4011-bb75-08110d951f5f
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b273921f-f49a-4011-bb75-08110d951f5f
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b273921f-f49a-4011-bb75-08110d951f5f
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b273921f-f49a-4011-bb75-08110d951f5f
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d46a8e03-b211-44c2-b17c-01ae813ead1b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5e6f3b27-b7af-412f-a40a-1d4f4be70cba
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ce564fa0-baca-4d9b-97a8-ec69910de4c2

| Configuring the Contract-Based REST and SOAP API | 60

Field or Action Name Related Form Name and ID

Payment.PaymentLoadDocuments Payments and Applications (AR302000)

Payment.PaymentLoadOrders Payments and Applications (AR302000)

PurchaseOrder.EnterPOReceipt Purchase Orders (PO301000)

PurchaseOrder.EnterAPBill Purchase Orders (PO301000)

PurchaseReceipt.ControlAmount Purchase Receipts (PO302000)

PurchaseReceipt.TotalAmount Purchase Receipts (PO302000)

PurchaseReceipt.PurchaseReceiptDetail.Ex-
tendedCost

Purchase Receipts (PO302000)

SalesInvoice.Totals Invoices (SO303000)

SalesInvoice.SalesInvoiceAddOrder Invoices (SO303000)

SalesInvoice.SalesInvoiceAutoApply Invoices (SO303000)

SalesOrder.SalesOrderAddStockItem Sales Orders (SO301000)

SalesOrder.SalesOrderCreatePurchaseOrder Sales Orders (SO301000)

Shipment.CurrencyID Shipments (SO302000)

Shipment.FreightCurrency Shipments (SO302000)

Task.RelatedEntityDescription Task (CR306020)

Task.CompleteAndFollowUpTask Task (CR306020)

Task.LinkEntityToTask Task (CR306020)

TimeEntry.Totals.Freight Time Entry (PM209100)

TimeEntry.Totals.FreightCost Time Entry (PM209100)

TimeEntry.Totals.FreightCostIsuptodate Time Entry (PM209100)

TimeEntry.Totals.FreightTaxCategory Time Entry (PM209100)

TimeEntry.Totals.OrderVolume Time Entry (PM209100)

TimeEntry.Totals.OrderWeight Time Entry (PM209100)

TimeEntry.Totals.PackageWeight Time Entry (PM209100)

TimeEntry.Totals.PremiumFreight Time Entry (PM209100)

TrialBalance.TrialBalanceProcess Trial Balance (GL303010)

TrialBalance.TrialBalanceProcessAll Trial Balance (GL303010)

TrialBalance.ReleaseTrialBalance Trial Balance (GL303010)

To Create a Custom Endpoint

You use the Web Service Endpoints (SM207060) form to create a custom endpoint.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ae844bf4-1aef-42cd-9e2f-49b3ee1bc8d7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ae844bf4-1aef-42cd-9e2f-49b3ee1bc8d7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5565686c-96c4-4bfa-a51d-9a2566baa808
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5565686c-96c4-4bfa-a51d-9a2566baa808
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d9901c8d-486d-45ed-8088-ea3d8ee3af19
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f47cffcc-543e-469c-a204-a9c1e3da346d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f47cffcc-543e-469c-a204-a9c1e3da346d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6449513c-254e-4093-b7b8-06de0108c384
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6449513c-254e-4093-b7b8-06de0108c384
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6449513c-254e-4093-b7b8-06de0108c384
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-2222-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-2222-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-2222-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-2222-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-2222-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-2222-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-2222-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=09cd2553-0e9e-2222-804d-106159f9a5b6
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=410758bc-6dfc-41f7-913d-2f27fcb3b2ae
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=410758bc-6dfc-41f7-913d-2f27fcb3b2ae
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=410758bc-6dfc-41f7-913d-2f27fcb3b2ae
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c620452-c947-4bd6-a9eb-2a8fc04226be

| Configuring the Contract-Based REST and SOAP API | 61

If you need to use a custom endpoint, you can either create an endpoint from scratch or extend an
existing endpoint with the needed API. This procedure describes how to create a custom endpoint from
scratch. To learn how to extend an existing endpoint, see To Extend an Existing Endpoint.

To Create an Endpoint from Scratch

You can create an endpoint that has the latest version of the contract only.

1. Open the Web Service Endpoints (SM207060) form.

2. In the Endpoint Name box, type the name of the new endpoint.

For details on the characters that can be used in the endpoint name and version, see
Naming Rules for Endpoints.

3. In the Endpoint Version box, type the version of the new endpoint.

4. Add the needed entities, fields, and actions to the contract of the created endpoint, as described in
the sections below.

5. Click Save on the form toolbar.

To Add a Top-Level Entity to the Contract of the Endpoint

1. In the Endpoint Name box, select the name of the endpoint to which you want to add an entity.

2. In the Endpoint Version box, select the version of the endpoint to which you want to add an
entity.

3. In the left pane, select the Endpoint node.

4. On the toolbar of the left pane, click Insert, and in the Create Entity dialog box, specify the
values as follows, and click OK:

a. In the Object Name box, type the name of the entity. This is the name of the API object that
you will use in the code of your application to work with the entity.

For details on the characters that can be used in the entity names, see Naming Rules
for Endpoints.

b. In the Screen Name lookup box, select the form to which the entity should correspond.

5. Add the needed fields, actions, or nested entities to the entity, as described in the sections below.

To Add a Linked or Detail Entity to Another Entity

1. In the Endpoint Name box, select the name of the endpoint to which you want to add an entity.

2. In the Endpoint Version box, select the version of the endpoint to which you want to add an
entity.

3. In the left pane, select the entity node to which you want to add a linked or detail entity.

4. On the toolbar of the left pane, click Insert.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c620452-c947-4bd6-a9eb-2a8fc04226be

| Configuring the Contract-Based REST and SOAP API | 62

5. In the Field Name box of the Create Entity dialog box, which opens, type the name of the field
that should be used to access the nested entity, and specify the values of other elements in one of
the following ways:

• If you want to insert an entity that already exists in the contract, select the Use Existing
Entity check box, and select the needed entity in the Entity Type box.

• If you want to insert a new entity, in the Object Name box, type the name of the entity, and
in the Object Type box, select the type of the entity: Top-Level, Linked, or Detail. If you have
selected the top-level entity to be inserted, in the Screen Name lookup box, specify the form
to which the entity should correspond.

For details on the characters that can be used in the entity names, see Naming Rules for
Endpoints.

6. Click OK. The new entity appears in the contract.

7. Add fields to the created entity, as described in the following section.

To Add Fields to an Entity

1. In the Endpoint Name box, select the name of the endpoint to which you want to add an entity.

2. In the Endpoint Version box, select the version of the endpoint to which you want to add an
entity.

3. In the left pane, select the entity node to which you want to add fields.

4. On the Fields tab of the right pane, do one of the following:

• Click Populate on the tab toolbar. In the Populate Fields dialog box, select the Acumatica
ERP object whose fields you want to include in the entity and the fields that you want to
include, and click OK. The selected fields are added to the contract.

• Click Add Row on the tab toolbar; then type the name of the new field in the Field Name
column of the added row, select the Acumatica ERP object whose field you want to include in
the entity in the Mapped Object column, and select the field that you want to include in the
Mapped Field column.

• For some fields to be included in the entity, the corresponding Acumatica ERP
feature or features must be enabled on the Enable/Disable Features (CS100000) form.
For information on Acumatica ERP basic functionality and add-on features, see
Preparing an Instance: Acumatica ERP Features.

• For details on the characters that can be used in the field names, see Naming Rules
for Endpoints.

5. Click Save on the form toolbar.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c1555e43-1bc5-4f6f-ba9d-b323f94d8a6b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=95c9a43e-fa12-4e79-99b4-6f5b1a688b72

| Configuring the Contract-Based REST and SOAP API | 63

To Add an Action to an Entity

You can add actions that are performed on multiple records (such as the removal of all
records or those the user selects) to processing forms only. Actions that can be performed
on multiple records are not supported for data entry and maintenance forms.

1. In the Endpoint Name box, select the name of the endpoint to which you want to add an entity.

2. In the Endpoint Version box, select the version of the endpoint to which you want to add an
entity.

3. In the left pane, select the Actions node in the needed entity.

4. On the toolbar of the left pane, click Insert.

5. In the Create Action dialog box, which opens, select the needed Acumatica ERP action, type the
name that should be used to invoke this action through the API, and click OK. The dialog box is
closed, and the new action is added to the contract.

For details on the characters that can be used in the action names, see Naming Rules for
Endpoints.

6. If the action has parameters, add the parameters to the action as follows:

a. In the left pane, click the action you have created.

b. On the Parameters tab of the right pane, do one of the following:

• Click Populate on the tab toolbar. In the Populate Fields dialog box, which opens, select
the Acumatica ERP object whose fields you want to use as parameters of the action and
the fields that you want to use as parameters, and click OK. The selected fields are added
to the contract.

• Click Add Row on the tab toolbar; then type the name of the new parameter in the
Parameter Name column of the added row, select the Acumatica ERP object whose field
you want to use a parameter of the action in the Mapped Object column, and select the
field that you want to use as a parameter in the Mapped Field column.

• For details on the characters that can be used in the parameter names, see
Naming Rules for Endpoints.

• If you need to add parameters of a workflow action, select the Transition
Parameters object as the object whose fields you want to use as parameters.
For details about workflow actions, see To Configure Actions in the Customization
Guide.

7. On the form toolbar, click Save.

To Extend an Existing Endpoint

You use the Web Service Endpoints (SM207060) form to create an endpoint as an extension of an
existing endpoint.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=cbbac950-4172-42c7-b950-a589a87df249
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c620452-c947-4bd6-a9eb-2a8fc04226be

| Configuring the Contract-Based REST and SOAP API | 64

You may need to create an extension of an endpoint if you want to use the entities that are defined
in the contract of the existing endpoint but you also need some additional entities, fields, and
actions in the contract. For example, the contract of the system endpoint with the name Default and
Version 6.00.001 contains the Address entity, which includes the following fields: AddressLine1,
AddressLine2, City, Country, PostalCode, and State. Suppose that you want to add the new
GPSCoordinates field to the Address entity of the contract and use it with other API of the contract.
You cannot edit the contract of the system endpoint; instead, you should create an endpoint that is
based on this system endpoint, and add the new GPSCoordinates field to the Address entity of the
contract of the new endpoint.

This procedure describes how to create an endpoint that is based on an existing endpoint.

To Extend an Existing Endpoint

1. Open the Web Service Endpoints (SM207060) form.

2. Select the endpoint that you want the new endpoint to be based on as follows:

a. Select the name of the base endpoint in the Endpoint Name box.

b. Select the version of the base endpoint in the Endpoint Version box.

3. Click Extend Endpoint on the form toolbar.

4. In the Extend Current Endpoint dialog box, which opens, make sure the correct name and
version of the base endpoint are specified in the Base Endpoint Name and Base Endpoint
Version boxes. Specify the name of the new endpoint in the Endpoint Name box and the version
of the new endpoint in the Endpoint Version box and click OK.

For details on the characters that can be used in the endpoint name and version, see
Naming Rules for Endpoints.

The new endpoint with the name and version you specify appears on the form. On the left pane of
the form, you can see the list of entities that were inherited from the base endpoint.

5. Add the needed entities, fields, and actions to the contract of the created endpoint, as described in
To Create a Custom Endpoint, or extend the entities inherited from the base endpoint, as described in
To Extend an Existing Entity.

6. Click Save on the form toolbar.

To Extend an Existing Entity

1. Select the extended endpoint in which you want to extend an entity inherited from the base
endpoint as follows:

a. In the Endpoint Name box, select the name of the extended endpoint.

b. In the Endpoint Version box, select the version of the extended endpoint.

2. In the left pane, select the entity inherited from the base endpoint to which you want to add new
fields, linked or detail entities, or actions.

3. If you want to add fields to the entity, do the following:

a. On the toolbar of the Fields tab in the right pane, click Extend Entity.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c620452-c947-4bd6-a9eb-2a8fc04226be

| Configuring the Contract-Based REST and SOAP API | 65

b. Use the Add Row, Delete Row, and Populate buttons, which have become available on the
tab toolbar, to add and delete fields of the entity. For more details, see To Add Fields to an Entity.

4. If you want to add actions or linked or detail entities, follow the instructions in To Create a Custom
Endpoint.

5. Click Save on the form toolbar.

To Validate an Endpoint

You use the Web Service Endpoints (SM207060) form to validate an endpoint, an entity, or an action.
During this validation, the system makes sure the following criteria are met for the elements of the
endpoint, entity, or action:

• The names of the elements satisfy the naming rules. For details on these rules, see Naming Rules for
Endpoints.

• The elements are mapped to objects, fields, and actions that exist in the system.

The validation of the name of a new entity, field, action, or action parameter is performed
automatically once you have entered the name on the form. You can validate an endpoint, entity, or
action manually, as described in this topic.

To Validate an Endpoint

1. Open the Web Service Endpoints (SM207060) form.

2. Select the endpoint that you want to validate as follows:

a. In the Endpoint Name box, select the name of the endpoint.

b. In the Endpoint Version box, select the version of the endpoint.

3. On the form toolbar, click Validate Endpoint. The long-running validation operation starts.

Once the validation is finished, the system displays a message with results of the validation. If the
validation has failed, the error message contains the names of all fields that caused the error.

4. If any errors occur, correct the endpoint accordingly.

To Validate an Entity

1. Open the Web Service Endpoints (SM207060) form.

2. Select the endpoint that contains the entity that you want to validate as follows:

a. In the Endpoint Name box, select the name of the endpoint.

b. In the Endpoint Version box, select the version of the endpoint.

3. In the left pane, click the entity that you want to validate.

4. On the toolbar of the Fields tab of the right pane, click Validate Entity.

Once the validation is finished, the system displays a message with results of the validation. If the
validation has failed, the error message contains the names of all fields that caused the error.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c620452-c947-4bd6-a9eb-2a8fc04226be
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c620452-c947-4bd6-a9eb-2a8fc04226be
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c620452-c947-4bd6-a9eb-2a8fc04226be

| Configuring the Contract-Based REST and SOAP API | 66

5. If any errors occur, correct the entity accordingly.

To Validate an Action

1. Open the Web Service Endpoints (SM207060) form.

2. Select the endpoint that contains the action that you want to validate as follows:

a. In the Endpoint Name box, select the name of the endpoint.

b. In the Endpoint Version box, select the version of the endpoint.

3. In the left pane, click the action that you want to validate.

4. On the toolbar of the Parameters tab of the right pane, click Validate Action.

Once the validation is finished, the system displays a message with results of the validation. If the
validation has failed, the error message contains the names of all fields that caused the error.

5. If any errors occur, correct the action accordingly.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c620452-c947-4bd6-a9eb-2a8fc04226be

| Working with the Contract-Based REST API | 67

Working with the Contract-Based REST API
The contract-based representational state transfer (REST) application programming interface (API) of
Acumatica ERP provides the REST interface of the Acumatica ERP contract-based web services, through
which external systems can get data records from Acumatica ERP, process these records, and save
new or updated records to Acumatica ERP.

This chapter includes the topics that are specific to the contract-based REST API. For general
information on the contract-based web services, see Configuring the Contract-Based REST and SOAP API.
You can find examples of how to use the contract-based SOAP API in Contract-Based API Examples and in
the following training courses:

• I300 Web Services: Basic

• I310 Web Services: Advanced

• I320 Web Services: Data Manipulation

For the API reference, see Contract-Based REST API Reference.

In This Chapter

• Representation of a Record in JSON Format

• Sign-In to the Service

• Sign-Out from the Service

• Change of the Business Date or Current Branch

• Creation of a Record

• Update of a Record

• Retrieval of a Record by Key Fields

• Retrieval of a Record by ID

• Retrieval of Records by Conditions

• Retrieval of Data from an Inquiry Form

• Retrieval of Records with Attributes

• Parameters for Retrieving Records

• Removal of a Record

• Execution of an Action

• Attachment of a File to a Record

• Retrieval of a File Attached to a Record

• Retrieval of the Schema of Custom Fields

• Retrieval of the Acumatica ERP Version and the List of Endpoints

https://openuni.acumatica.com/courses/integration/i300-web-services-basic-data-retrieval/
https://openuni.acumatica.com/courses/integration/i310-web-services-advanced-data-retrieval/
https://openuni.acumatica.com/courses/integration/i320-web-services-data-manipulation/

| Working with the Contract-Based REST API | 68

• Multi-Language Fields

Representation of a Record in JSON Format

By using the contract-based REST API, you obtain existing records from Acumatica ERP, create new
records, update, and delete them. You work with the records in Acumatica ERP by using the entities
that are defined in the contract of the endpoint that you use to access the service. You pass records to
and receive them from the contract-based REST API in JavaScript object notation (JSON) format. JSON
is a text format for transmitting data objects that consist of key-value pairs.

To represent a record in JSON format, you use the rules that are described in the following sections.
You do not need to specify the values of all fields of an entity; you can specify the values of only the
needed fields.

System Fields

You specify the value of a system field (such as ID, RowNumber, and Note) of an entity in the following
format.

<Field name> : <Value>

For example, if you need to specify the note Imported for an entity, you use the following string.

"Note" : "Imported"

General Fields

You specify the value of a general field (that is, a field that is not a system field) of an entity in the
following format.

<Field name> : {value : <Value>}

For example, if you need to specify JOHNGOOD as the customer ID of a customer record, you use the
following string.

"CustomerID" : {value : "JOHNGOOD"}

Linked Entities

You specify the values of the fields of a linked entity in the following format.

<Field name> :
 {
 <List of fields of the linked entity with values
 }

For example, if you need to specify the values of an email address and the address of a customer main
contact, you use the following string.

"MainContact" :
 {
 "Email" : {value : "demo@gmail.com" },
 "Address" :
 {

| Working with the Contract-Based REST API | 69

 "AddressLine1" : {value : "4030 Lake Washington Blvd NE" },
 "AddressLine2" : {value : "Suite 100" },
 "City" : {value : "Kirkland" },
 "State" : {value : "WA" },
 "PostalCode" : {value : "98033" }
 }
 }

Detail Entities

You specify the values of the fields of a detail entity in the following format.

<Field name> :
 [
 {
 <List of fields of the detail entity with the values}
 },
 {
 <List of fields of the detail entity with the values>
 },
 …
]

For example, if you need to specify the values of two detail lines of a sales order, you use the following
string.

"Details" : [
 {
 "InventoryID" : {value: "AALEGO500"},
 "Quantity" : {value: 10},
 "UOM" : {value: "PIECE"},
 },
 {
 "InventoryID" : {value: "CONGRILL"},
 "Quantity" : {value: 1},
 "UOM" : {value: "PIECE"},
 }
]

Custom Fields

You specify the values of the custom fields (that is, the fields that are not included in the contract of
the endpoint) in the following format.

Custom fields can correspond to the following elements:

• The predefined elements on an Acumatica ERP form that are not included in the entity
definition

• The elements that were added to the Acumatica ERP form in a customization project

• The user-defined fields

"custom" :
 {

| Working with the Contract-Based REST API | 70

 <View name> :
 {
 <Field name> :
 {
 "type" : <value>,
 "value" : <value>
 }
 }
 }

You use this block in the JSON representation of the entity (top-level, detail, or linked) that contains
this custom field.

For details on how to find out the field name and the name of the data view, see Custom
Fields.

For example, suppose that you added the Personal ID element to the Main Contact area of the
Customers (AR303000) form in a customization project. The Contact entity, which is available through
the MainContact property of the Customer entity, contains the Personal ID custom element. This
element has the UsrPersonalID field name and belongs to the DefContact data view. The type of
the element depends on the contract version (in Contract Version 2, String; in Contract Version 3,
CustomStringField). Therefore, to specify the value AB123456 of the Personal ID custom element
for the customer with ID JOHNGOOD through the REST API, you use one of the following strings
depending on the contract version of the endpoint:

• For Contract Version 3

{
 "CustomerID" : {value : "JOHNGOOD" } ,
 "MainContact" :
 {
 "custom" :
 {
 "DefContact" :
 {
 "UsrPersonalID" :
 {
 "type" : "CustomStringField",
 "value" : "AB123456"
 }
 }
 }
 }
}

• For Contract Version 2

{
 "CustomerID" : {value : "JOHNGOOD" } ,
 "MainContact" :
 {
 "custom" :
 {
 "DefContact" :
 {

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=652929bc-9606-4056-aa6e-0c2d1147171b

| Working with the Contract-Based REST API | 71

 "UsrPersonalID" :
 {
 "type" : "String",
 "value" : "AB123456"
 }
 }
 }
 }
}

Sign-In to the Service

Each time your application starts working with the Acumatica ERP contract-based REST service, you
have to sign in to Acumatica ERP. To sign in to Acumatica ERP, you access the needed URL with the
POST HTTP method and pass the credentials in the request body. See details on the URL, parameters,
HTTP method, HTTP headers, HTTP body, and response format in the following sections.

Instead of directly signing in to Acumatica ERP, your application can use the OAuth 2.0
authorization. For details about OAuth 2.0, see Authorizing Client Applications to Work with
Acumatica ERP.

URL

When you need to sign in to Acumatica ERP, you use the following URL.

http://<Acumatica ERP URL>/entity/auth/login

You replace <Acumatica ERP URL> with the URL of your Acumatica ERP instance.

For example, suppose that you want to sign in to a local Acumatica ERP instance with the name
AcumaticaDB. You should use the following URL: http://localhost/AcumaticaDB/entity/auth/
login.

Parameters

You use no parameters when you sign in to Acumatica ERP.

HTTP Method

You use the POST HTTP method for signing in.

HTTP Headers

You can specify the following header in the request.

| Working with the Contract-Based REST API | 72

Header Description

Content-Type Specifies the format of the request body, which can be one of the following:

• application/json

• text/json

• application/xml

• text/xml

• application/x-www-form-urlencoded

HTTP Body

In the request body, you pass the credentials for accessing Acumatica ERP in JSON format, as shown in
the following example.

{
 "name" : "admin",
 "password" : "123",
 "tenant" : "MyStore",
 "branch" : "MYSTORE",
 "locale" : "en-US"
}

You specify the values of the parameters as follows:

• name: The username that the application should use to sign in to Acumatica ERP, such as
"admin".

• password: The password for the username, such as "123".

• tenant: The name of the tenant to which the application should sign in, such as "MyStore". You
can view the name that should be used for the tenant in the Login Name box of the Tenants
(SM203520) form.

• branch: The ID of the branch to which the application should sign in. You can view the ID of the
branch in the Branch ID box of the Branches (CS102000) form.

• locale: The locale that should be used in Acumatica ERP. You should specify the locale in the
System.Globalization.CultureInfo format converted to string, as with "EN-US".

This parameter has been developed for future use. You do not need to set its value.

Response

The response of a successful method call is 204 No Content.

The response headers contain the cookies that authorize the user to make further requests.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=3f8ba9f5-9e04-4568-a93e-862ba7b92c2b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b97ab72d-4ab4-4f02-b69c-f7f61b316ced

| Working with the Contract-Based REST API | 73

Status Codes

The following table lists the HTTP status codes that the system returns for a sign-in request.

Code Description

204 The request has been completed successfully.

400 The data specified in the request is invalid.

429 The number of requests has exceeded the limit imposed by the license (see Li-
cense Restrictions for API Users).

500 An internal server error has occurred.

HTTP Example

The following request shows an example of a sign in to Acumatica ERP through the REST API.

In the request example below, <Acumatica ERP instance URL> is the URL of the Acumatica
ERP instance (such as https://my.acumatica.com/MyInstance). You can omit the instance
name in the URL (such as https://my.acumatica.com) if the instance is installed in the root
of the website.

POST /auth/login HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity
Accept: application/json
Content-Type: application/json

{
 "name" : "admin",
 "password" : "123",
 "tenant" : "MyTenant",
 "branch" : "HEADOFFICE"
}

You can find this example in the Help-and-Training-Examples repository on GitHub.

С# Example

The following code shows an example of a class that implements a sign in to Acumatica ERP through
the REST application programming interface (API).

public class RestService: IDisposable
{
 private readonly HttpClient _httpClient;

 private readonly string _acumaticaBaseUrl;

 public RestService(
 string acumaticaBaseUrl, string userName, string password,
 string tenant, string branch, string locale)
 {

https://github.com/Acumatica/Help-and-Training-Examples

| Working with the Contract-Based REST API | 74

 _acumaticaBaseUrl = acumaticaBaseUrl;
 _httpClient = new HttpClient(
 new HttpClientHandler
 {
 UseCookies = true,
 CookieContainer = new CookieContainer()
 })
 {
 BaseAddress = new Uri(acumaticaBaseUrl +
 "/entity/Default/18.200.001/"),
 DefaultRequestHeaders =
 {
 Accept = {MediaTypeWithQualityHeaderValue.Parse("application/json")}
 }
 };

 //Log in to Acumatica ERP
 _httpClient.PostAsJsonAsync(
 acumaticaBaseUrl + "/entity/auth/login", new
 {
 name = userName,
 password = password,
 tenant = tenant,
 branch = branch,
 locale = locale
 }).Result
 .EnsureSuccessStatusCode();
 }

 void IDisposable.Dispose()
 {
 _httpClient.PostAsync(_acumaticaBaseUrl + "/entity/auth/logout",
 new ByteArrayContent(new byte[0])).Wait();
 _httpClient.Dispose();
 }
}

The following code signs in to Acumatica ERP when an instance of the RestService class, which is
defined in the code fragment above, is created.

RestService rs = new RestService(
 Properties.Settings.Default.AcumaticaBaseUrl,
 Properties.Settings.Default.UserName,
 Properties.Settings.Default.Password,
 Properties.Settings.Default.Tenant,
 Properties.Settings.Default.Branch,
 Properties.Settings.Default.Locale
);

Usage Notes

For each attempt to sign in to Acumatica ERP as described in this topic, you must implement the
signing out from the service after you finish your work with Acumatica ERP to close the session. For
details about the signing out, see Sign-Out from the Service.

| Working with the Contract-Based REST API | 75

You should also take into account Acumatica ERP license API limits. For details, see License Restrictions
for API Users.

OpenAPI Specification

You can retrieve the swagger.json file with the OpenAPI specification of the endpoint by using the
following URL.

http://<Acumatica ERP instance URL>/entity/swagger.json

In this URL, <Acumatica ERP instance URL> is the URL of the Acumatica ERP instance.

Sign-Out from the Service

Each time your application finishes working with the Acumatica ERP contract-based REST service, you
have to sign out from Acumatica ERP. To sign out from Acumatica ERP, you access the needed URL
address with the POST HTTP method. See the following sections for details on the URL, parameters,
HTTP method, and response format.

URL

When you need to sign out from Acumatica ERP, you use the following URL.

http://<Acumatica ERP URL>/entity/auth/logout

You replace <Acumatica ERP URL> with the URL of your Acumatica ERP instance.

For example, suppose that you want to sign out from a local Acumatica ERP instance with the name
AcumaticaDB. You should use the following URL: http://localhost/AcumaticaDB/entity/auth/
logout.

Parameters

You use no parameters when you sign out from Acumatica ERP.

HTTP Method

You use the POST HTTP method to sign out from Acumatica ERP.

HTTP headers

You do not specify any header in the request.

Response

The response of a successful method call is 204 No Content.

Status Codes

The following table lists the HTTP status codes that the system returns for a sign-out request.

Code Description

204 The request has been completed successfully.

| Working with the Contract-Based REST API | 76

Code Description

400 The data specified in the request is invalid.

429 The number of requests has exceeded the limit imposed by the license (see Li-
cense Restrictions for API Users).

500 An internal server error has occurred.

HTTP Example

The following request shows an example of a sign in to Acumatica ERP through the REST API.

In the request example below, <Acumatica ERP instance URL> is the URL of the Acumatica
ERP instance (such as https://my.acumatica.com/MyInstance). You can omit the instance
name in the URL (such as https://my.acumatica.com) if the instance is installed in the root
of the website.

POST /auth/logout HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity
Accept: application/json
Content-Type: application/json

You can find this example in the Help-and-Training-Examples repository on GitHub.

C# Example

The following code shows an example of a class that implements signing out from Acumatica ERP
through the REST application programming interface (API). The signing out is performed each time an
instance of the RestService class is released.

public class RestService: IDisposable
{
 private readonly HttpClient _httpClient;

 private readonly string _acumaticaBaseUrl;

 public RestService(
 string acumaticaBaseUrl, string userName, string password,
 string company, string branch)
 {
 _acumaticaBaseUrl = acumaticaBaseUrl;
 _httpClient = new HttpClient(
 new HttpClientHandler
 {
 UseCookies = true,
 CookieContainer = new CookieContainer()
 })
 {
 BaseAddress = new Uri(acumaticaBaseUrl +
 "/entity/Default/18.200.001/"),
 DefaultRequestHeaders =
 {

https://github.com/Acumatica/Help-and-Training-Examples

| Working with the Contract-Based REST API | 77

 Accept = {MediaTypeWithQualityHeaderValue.Parse("application/json")}
 }
 };

 _httpClient.PostAsJsonAsync(
 acumaticaBaseUrl + "/entity/auth/login", new
 {
 name = userName,
 password = password,
 company = company,
 branch = branch
 }).Result
 .EnsureSuccessStatusCode();
 }

 //Log out from Acumatica ERP
 void IDisposable.Dispose()
 {
 _httpClient.PostAsync(_acumaticaBaseUrl + "/entity/auth/logout",
 new ByteArrayContent(new byte[0])).Wait();
 _httpClient.Dispose();
 }
}

OpenAPI Specification

You can retrieve the swagger.json file with the OpenAPI specification of the endpoint by using the
following URL.

http://<Acumatica ERP instance URL>/entity/swagger.json

In this URL, <Acumatica ERP instance URL> is the URL of the Acumatica ERP instance.

Change of the Business Date or Current Branch

When you use the contract-based REST API, the current date is used as the business date, and the
branch that you specified when signing in is used as the current branch. When you create or update
a record by using the contract-based REST API, you may need to use other values of the business
date or current branch. To do this, you use the custom HTTP headers PX-CbApiBusinessDate and
PX-CbApiBranch in the HTTP requests you make. See the following sections for details on the URL,
headers, HTTP method, body, and response format.

The new values that you specify for the business date or current branch are valid only for
the current HTTP request.

URL

When you create or update a record in Acumatica ERP, you use the following URL: http://<Base
endpoint URL>/<Top-level entity>.

The URL has the following components:

| Working with the Contract-Based REST API | 78

• <Base endpoint URL> is the URL of the contract-based endpoint through which you are going to
work with Acumatica ERP, which has the following format: http://<Acumatica ERP instance
URL>/entity/<Endpoint name>/<Endpoint version>/.

• <Top-level entity> is the name of the entity for which you are going to create or update a
record.

For example, suppose that you want to update a stock item record in a local Acumatica ERP instance
with the name AcumaticaDB by using a system endpoint with the name Default and Version
18.200.001. You would use the following URL to update a record: http://localhost/AcumaticaDB/entity/
Default/18.200.001/StockItem.

Headers

You can use the following optional headers for changing the business date or current branch.

Header Description

PX-CbApiBusinessDate Optional. Specifies the new business date. The date can be specified in any
format. If you omit this header, the current date is used as the business
date.

PX-CbApiBranch Optional. Specifies the new current branch. The branch should be specified
as a branch name. If you omit this header, the branch that you specified
when signing in is used as the current branch.

HTTP Method

You use the PUT HTTP method to change the business date or the current branch while creating or
updating a record.

Parameters, Body, Response, and Status Codes

For information on the request parameters, request body, possible responses and status codes, see the
corresponding sections in Creation of a Record and Update of a Record.

HTTP Example

The following request is an example of creating a new journal transaction with SweetLife Store set as
the new current branch and 01-Jan-2018 set as the business date.

In the request example below, <Acumatica ERP instance URL> is the URL of the Acumatica
ERP instance (such as https://my.acumatica.com/MyInstance). You can omit the instance
name in the URL (such as https://my.acumatica.com) if the instance is installed in the root
of the website.

PUT / HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/JournalTransaction
Accept: application/json
Content-Type: application/json
PX-CbApiBusinessDate: 2018/01/01
PX-CbApiBranch: SweetLife Store

{"Description": {"value": "Test transaction description"}}

| Working with the Contract-Based REST API | 79

You can find this example in the Help-and-Training-Examples repository on GitHub.

Creation of a Record

When you need to create a record by using the contract-based REST API, you access the needed URL
address with the PUT HTTP method and pass the record representation in JSON format in the request
body. See the following sections for details on the URL, parameters, HTTP method, HTTP body, HTTP
headers, and response format.

URL

If you need to create a record in Acumatica ERP, you use the following URL.

http://<Base endpoint URL>/<Top-level entity>

The URL has the following components:

• <Base endpoint URL> is the URL of the contract-based endpoint through which you are going to
work with Acumatica ERP, which has the following format: http://<Acumatica ERP instance
URL>/entity/<Endpoint name>/<Endpoint version>/.

• <Top-level entity> is the name of the entity for which you are going to create a record.

For example, suppose that you want to create a stock item record in a local Acumatica ERP instance
with the name AcumaticaDB by using the system endpoint with the name Default and Version
18.200.001. You should use the following URL to create a record: http://localhost/AcumaticaDB/
entity/Default/18.200.001/StockItem.

Parameters

You can use the following parameters when you retrieve a record from Acumatica ERP:

• $expand: To specify the linked and detail entities to be expanded

Contract Version 4 requires that you list in the $expand parameter every detail and
related entity that you are going to have in the response body. For contract Version 2
and 3, the detail and related entities contained in the request body are also contained in
the response body, no matter whether they are listed in the $expand parameter or not.

• $select: To specify the fields of the entity to be returned

• $custom: To specify the fields that are not defined in the contract to be returned

For detailed descriptions of the parameters, see Parameters for Retrieving Records.

HTTP Method, HTTP Body

You use the PUT HTTP method and pass a record in JSON format in the request body. You can find
details on how to represent a record in JSON format in Representation of a Record in JSON Format. See
below for an example of a customer record representation in JSON format.

{

https://github.com/Acumatica/Help-and-Training-Examples

| Working with the Contract-Based REST API | 80

 "CustomerID" : {value : "JOHNGOOD"},
 "CustomerName" : {value : "John Good"},
 "CustomerClass" : {value : "DEFAULT"},
 "MainContact" :
 {
 "Email" : {value : "demo@gmail.com"},
 "Address" :
 {
 "AddressLine1" : {value : "4030 Lake Washington Blvd NE"},
 "AddressLine2" : {value : "Suite 100"},
 "City" : {value : "Kirkland"},
 "State" : {value : "WA" },
 "PostalCode" : {value : "98033"}
 }
 }
}

HTTP Headers

You can specify the following headers in the request.

Header Description

Accept Specifies the format of the response body, which can be one of the follow-
ing:

• application/json

• text/json

Content-Type Specifies the format of the request body, which can be one of the following:

• application/json

• text/json

If-None-Match Changes the behavior of the PUT request, which normally either creates a
new record or updates an existing one. If you only want to create a new
record, use the optional If-None-Match header with the * (asterisk) value.

Response

The response of a successful method call contains the created record in JSON format in the response
body. The response includes only the values of the fields of the created record that were specified
during creation of the record or that were specified to be returned by using the parameters of the
request.

For Contract Version 4, in case of validation errors, the response body contains the validation error
messages in the error fields as in the following example.

"CustomerID": {
 "value": "ABARTENDE1",
 "error": "'Customer' cannot be found in the system."
 }

| Working with the Contract-Based REST API | 81

Status Codes

The following table lists the HTTP status codes that the system returns for a request that creates a
record.

Code Description

200 The request has been completed successfully. The response body contains the
created record.

400 The data specified in the request is invalid.

401 The user is not signed in to the system.

403 The user has insufficient rights to access the Acumatica ERP form that corre-
sponds to the entity.

412 You have used the If-None-Match header with the * value, and the record al-
ready exists.

422 The data specified in the request is invalid and the validation errors are returned
in the error fields of the response body.

429 The number of requests has exceeded the limit imposed by the license (see Li-
cense Restrictions for API Users).

500 An internal server error has occurred.

HTTP Example
The following request shows an example of the creation of a Customer record in Acumatica ERP
through the REST API.

In the request example below, <Acumatica ERP instance URL> is the URL of the Acumatica
ERP instance (such as https://my.acumatica.com/MyInstance). You can omit the instance
name in the URL (such as https://my.acumatica.com) if the instance is installed in the root
of the website.

PUT / HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/Customer
Accept: application/json
Content-Type: application/json

{
 "CustomerID" : {value : "JOHNGOOD"},
 "CustomerName" : {value : "John Good"},
 "CustomerClass" : {value : "DEFAULT"},
 "MainContact" :
 {
 "Email" : {value : "demo@gmail.com"},
 "Address" :
 {
 "AddressLine1" : {value : "4030 Lake Washington Blvd NE"},
 "AddressLine2" : {value : "Suite 100"},
 "City" : {value : "Kirkland"},
 "State" : {value : "WA" },
 "PostalCode" : {value : "98033"}

| Working with the Contract-Based REST API | 82

 }
 }
}

You can find this example in the Help-and-Training-Examples repository on GitHub.

C# Example

The following code shows an example of a class that implements the creation of a record in Acumatica
ERP through the REST API.

public class RestService: IDisposable
{
 private readonly HttpClient _httpClient;

 private readonly string _acumaticaBaseUrl;

 public RestService(
 string acumaticaBaseUrl, string userName, string password,
 string company, string branch)
 {
 _acumaticaBaseUrl = acumaticaBaseUrl;
 _httpClient = new HttpClient(
 new HttpClientHandler
 {
 UseCookies = true,
 CookieContainer = new CookieContainer()
 })
 {
 BaseAddress = new Uri(acumaticaBaseUrl +
 "/entity/Default/18.200.001/"),
 DefaultRequestHeaders =
 {
 Accept = {MediaTypeWithQualityHeaderValue.Parse("application/json")}
 }
 };
 _httpClient.PostAsJsonAsync(
 acumaticaBaseUrl + "/entity/auth/login", new
 {
 name = userName,
 password = password,
 company = company,
 branch = branch
 }).Result
 .EnsureSuccessStatusCode();
 }

 void IDisposable.Dispose()
 {
 _httpClient.PostAsync(_acumaticaBaseUrl + "/entity/auth/logout",
 new ByteArrayContent(new byte[0])).Wait();
 _httpClient.Dispose();
 }

https://github.com/Acumatica/Help-and-Training-Examples

| Working with the Contract-Based REST API | 83

 //Data submission
 public string Put(string entityName, string parameters, string entity)
 {
 var res = _httpClient
 .PutAsync(_acumaticaBaseUrl + "/entity/Default/18.200.001/" +
 entityName + "?" + parameters,
 new StringContent(entity, Encoding.UTF8, "application/json"))
 .Result
 .EnsureSuccessStatusCode();

 return res.Content.ReadAsStringAsync().Result;
 }
}

The following code uses the RestService.Put() method, which is defined in the previous code
fragment, to create a customer record.

public static void CreateCustomer()
{
 //Path to a source text file that contains
 //the new customer record in JSON format
 string entitySource = @"..\..\Input\Customer.txt";

 //Initialize the REST service
 RestService rs = new RestService(
 Properties.Settings.Default.AcumaticaBaseUrl,
 Properties.Settings.Default.UserName,
 Properties.Settings.Default.Password,
 Properties.Settings.Default.Company,
 Properties.Settings.Default.Branch
);

 using (StreamReader sr = new StreamReader(entitySource))
 {
 //Read the customer record in JSON format from the file
 string entityAsString = sr.ReadToEnd().ToString();

 //Create a customer record
 string customer = rs.Put("Customer", null, entityAsString);
 }
}

Update of a Record

When you need to update an existing record by using the contract-based REST API, you access the
needed URL with the PUT HTTP method and pass the record representation in JSON format in the
request body. See the following sections for details on the URL, parameters, HTTP method, HTTP body,
HTTP headers, and response format.

URL

If you need to update a record in Acumatica ERP, you use the following URL.

| Working with the Contract-Based REST API | 84

http://<Base endpoint URL>/<Top-level entity>

The URL has the following components:

• <Base endpoint URL> is the URL of the contract-based endpoint through which you are going to
work with Acumatica ERP, which has the following format: http://<Acumatica ERP instance
URL>/entity/<Endpoint name>/<Endpoint version>/.

• <Top-level entity> is the name of the entity for which you are going to update a record.

For example, suppose that you want to update a stock item record in a local Acumatica ERP instance
with the name AcumaticaDB by using the system endpoint with the name Default and Version
18.200.001. You would use the following URL to update a record: http://localhost/AcumaticaDB/
entity/Default/18.200.001/StockItem.

Parameters

You can use the following parameters when you are updating a record in Acumatica ERP:

• $filter: To specify filtering conditions that identify the record to be updated

• $expand: To specify the linked and detail entities to be expanded

Contract Version 4 requires that you list in the $expand parameter every detail and
related entity that you are going to have in the response body. For contract Version 2
and 3, the detail and related entities contained in the request body are also contained in
the response body, no matter whether they are listed in the $expand parameter or not.

• $select: To specify the fields of the entity to be returned

• $custom: To specify the fields that are not defined in the contract to be returned

For detailed descriptions of the parameters, see Parameters for Retrieving Records.

HTTP Method, HTTP Body

You use the PUT HTTP method and pass a record in JSON format in the request body. You can find
details on how to represent a record in JSON format in Representation of a Record in JSON Format.

To make it possible for the record to be found by Acumatica ERP, you can use any of the following
approaches:

• Specify the values of the key fields in the record representation in JSON format.

• Specify the value of the ID property in the record representation in JSON format.

• Specify the filtering conditions that identify the record in the $filter parameter of the method. For
details on the parameter, see the Parameters section in this topic.

If you want to delete a detail line during update, you should specify true as the value of the delete
property of the corresponding detail entity: "delete" : true. To identify the detail line to be deleted,
you can specify either the values of the key fields of the detail line or the value of the ID property.

HTTP Headers

You can specify the following headers in the request.

| Working with the Contract-Based REST API | 85

Header Description

Accept Specifies the format of the response body, which can be one of the follow-
ing:

• application/json

• text/json

Content-Type Specifies the format of the request body, which can be one of the following:

• application/json

• text/json

If-Match Changes the behavior of the PUT request, which normally either creates
a new record or updates an existing one. If you only want to update a
record, use the optional If-Match header with the * value.

Response

The response of a successful method call contains the updated record in JSON format in the response
body.

For Contract Version 4, in case of validation errors, the response body contains the validation error
messages in the error fields as in the following example.

"CustomerID": {
 "value": "ABARTENDE1",
 "error": "'Customer' cannot be found in the system."
 }

Status Codes

The following table lists the HTTP status codes that the system returns for a request that updates a
record.

Code Description

200 The request has been completed successfully. The response body contains the
updated record.

400 The data specified in the request is invalid.

401 The user is not signed in to the system.

403 The user has insufficient rights to access the Acumatica ERP form that corre-
sponds to the entity.

412 You have used the If-Match header with the * value, and the record does not
exist.

422 The data specified in the request is invalid and the validation errors are returned
in the error fields of the response body.

429 The number of requests has exceeded the limit imposed by the license (see Li-
cense Restrictions for API Users).

| Working with the Contract-Based REST API | 86

Code Description

500 An internal server error has occurred.

HTTP Example

The following request shows an example of the update of an existing customer record that has the
demo@gmail.com email address.

In the request example below, <Acumatica ERP instance URL> is the URL of the Acumatica
ERP instance (such as https://my.acumatica.com/MyInstance). You can omit the instance
name in the URL (such as https://my.acumatica.com) if the instance is installed in the root
of the website.

PUT ?$filter=MainContact/Email%20eq%20'demo@gmail.com'&
 $select=CustomerID,CustomerClass,MainContact/Email&$expand=MainContact HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/Customer
Accept: application/json
Content-Type: application/json

{
 "CustomerClass" : {value : "ECCUSTOMER"},
}

You can find this example in the Help-and-Training-Examples repository on GitHub.

C# Example

The following code shows an example of a class that implements the update of a record in Acumatica
ERP through the REST API.

public class RestService: IDisposable
{
 private readonly HttpClient _httpClient;

 private readonly string _acumaticaBaseUrl;

 public RestService(
 string acumaticaBaseUrl, string userName, string password,
 string company, string branch)
 {
 _acumaticaBaseUrl = acumaticaBaseUrl;
 _httpClient = new HttpClient(
 new HttpClientHandler
 {
 UseCookies = true,
 CookieContainer = new CookieContainer()
 })
 {
 BaseAddress = new Uri(acumaticaBaseUrl +
 "/entity/Default/18.200.001/"),
 DefaultRequestHeaders =

https://github.com/Acumatica/Help-and-Training-Examples

| Working with the Contract-Based REST API | 87

 {
 Accept = {MediaTypeWithQualityHeaderValue.Parse("application/json")}
 }
 };
 _httpClient.PostAsJsonAsync(
 acumaticaBaseUrl + "/entity/auth/login", new
 {
 name = userName,
 password = password,
 company = company,
 branch = branch
 }).Result
 .EnsureSuccessStatusCode();
 }

 void IDisposable.Dispose()
 {
 _httpClient.PostAsync(_acumaticaBaseUrl + "/entity/auth/logout",
 new ByteArrayContent(new byte[0])).Wait();
 _httpClient.Dispose();
 }

 //Data submission
 public string Put(string entityName, string parameters, string entity)
 {
 var res = _httpClient
 .PutAsync(_acumaticaBaseUrl + "/entity/Default/18.200.001/" +
 entityName + "?" + parameters,
 new StringContent(entity, Encoding.UTF8, "application/json"))
 .Result
 .EnsureSuccessStatusCode();

 return res.Content.ReadAsStringAsync().Result;
 }
}

The following code uses the RestService.PutWithFilter() method, which is defined in the previous
code fragment, to update an existing customer record that has the demo@gmail.com email address.

public static void UpdateCustomer()
{
 //Path to a source text file that contains an updated customer record in JSON format
 string entitySource = @"..\..\Input\Customer_Upd.txt";

 //REST service initialization
 RestService rs = new RestService(
 Properties.Settings.Default.AcumaticaBaseUrl,
 Properties.Settings.Default.UserName,
 Properties.Settings.Default.Password,
 Properties.Settings.Default.Company,
 Properties.Settings.Default.Branch
);

 using (StreamReader sr = new StreamReader(entitySource))
 {

| Working with the Contract-Based REST API | 88

 //Read customer record in JSON format from file
 string entityAsString = sr.ReadToEnd().ToString();

 //Specify filtering parameters that identify the customer
 string parameter = "$filter=MainContact/Email eq 'demo@gmail.com'";

 //Update the customer record
 string customer = rs.Put("Customer", parameter, entityAsString);
 }
}

Retrieval of a Record by Key Fields

To retrieve a record by the values of its key fields from Acumatica ERP by using the contract-based
REST API, you access the needed URL with the GET HTTP method and specify the fields that should
be returned in the parameters of the method. See the following sections for details on the URL,
parameters, HTTP method, HTTP headers, and response format.

URL

If you need to obtain a particular record with the known key fields, you use the following URL

http://<Base endpoint URL>/<Top-level entity>/<Key value 1>/<Key value 2>

The URL has the following components:

• <Base endpoint URL> is the URL of the contract-based endpoint through which you are going to
work with Acumatica ERP, which has the following format: http://<Acumatica ERP instance
URL>/entity/<Endpoint name>/<Endpoint version>/.

• <Top-level entity> is the name of the entity for which you are going to retrieve a record.

• <Key value 1> and <Key value 2> are the values of the key fields of the record to be retrieved.
You use the number and order of key fields as they are defined on the corresponding Acumatica
ERP form.

You can pass the key fields separated by vertical bar (|) instead of slash(/).

For example, suppose that you want to retrieve the sales order with order type SO and order number
000123 from a local Acumatica ERP instance with the name AcumaticaDB by using the system
endpoint with the name Default and Version 18.200.001. You should use the following URL to retrieve
the sales order: http://localhost/AcumaticaDB/entity/Default/18.200.001/SalesOrder/
SO/000123.

Parameters

You can use the following parameters when you retrieve a record from Acumatica ERP:

• $expand: To specify the linked and detail entities to be expanded

• $custom: To specify the fields that are not defined in the contract to be returned

• $select: To specify the fields of the entity to be returned

| Working with the Contract-Based REST API | 89

For detailed descriptions of the parameters, see Parameters for Retrieving Records.

HTTP Method

You use the GET HTTP method to retrieve records.

HTTP Headers

You can specify the following header in the request.

Header Description

Accept Specifies the format of the response body, which can be one of the follow-
ing:

• application/json

• text/json

Response

The response of a successful method call contains the retrieved record in JSON format in the response
body. For details on record representation in JSON format, see Representation of a Record in JSON Format.

Status Codes

The following table lists the HTTP status codes that the system returns for a request that retrieves a
record by the values of key fields.

Code Description

200 The request has been completed successfully. The response contains the re-
quested record.

401 The user is not signed in to the system.

403 The user has insufficient rights to access the Acumatica ERP form that corre-
sponds to the entity.

429 The number of requests has exceeded the limit imposed by the license (see Li-
cense Restrictions for API Users).

500 An internal server error has occurred.

HTTP Example

The following request shows an example of the retrieval of a SalesOrder record through the REST API.

In the request example below, <Acumatica ERP instance URL> is the URL of the Acumatica
ERP instance (such as https://my.acumatica.com/MyInstance). You can omit the instance
name in the URL (such as https://my.acumatica.com) if the instance is installed in the root
of the website.

GET /SO/000001?$expand=Details HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/SalesOrder
Accept: application/json

| Working with the Contract-Based REST API | 90

Content-Type: application/json

You can find this example in the Help-and-Training-Examples repository on GitHub.

C# Example

The following code shows an example of a class that implements the retrieval of a record in Acumatica
ERP through the REST API.

public class RestService: IDisposable
{
 private readonly HttpClient _httpClient;

 private readonly string _acumaticaBaseUrl;

 public RestService(
 string acumaticaBaseUrl, string userName, string password,
 string company, string branch)
 {
 _acumaticaBaseUrl = acumaticaBaseUrl;
 _httpClient = new HttpClient(
 new HttpClientHandler
 {
 UseCookies = true,
 CookieContainer = new CookieContainer()
 })
 {
 BaseAddress = new Uri(acumaticaBaseUrl +
 "/entity/Default/18.200.001/"),
 DefaultRequestHeaders =
 {
 Accept = {MediaTypeWithQualityHeaderValue.Parse("application/json")}
 }
 };
 _httpClient.PostAsJsonAsync(
 acumaticaBaseUrl + "/entity/auth/login", new
 {
 name = userName,
 password = password,
 company = company,
 branch = branch
 }).Result
 .EnsureSuccessStatusCode();
 }

 void IDisposable.Dispose()
 {
 _httpClient.PostAsync(_acumaticaBaseUrl + "/entity/auth/logout",
 new ByteArrayContent(new byte[0])).Wait();
 _httpClient.Dispose();
 }

 //Retrieval of a record by key fields

https://github.com/Acumatica/Help-and-Training-Examples

| Working with the Contract-Based REST API | 91

 public string GetByKeys(string entityName, string keys, string parameters)
 {
 var res = _httpClient.GetAsync(
 _acumaticaBaseUrl + "/entity/Default/18.200.001/" +
 entityName + "/" + keys + "?" + parameters)
 .Result
 .EnsureSuccessStatusCode();

 return res.Content.ReadAsStringAsync().Result;
 }
}

The following code uses the RestService.GetByKeys() method, which is defined in the previous code
fragment, to retrieve a sales order with detail lines from Acumatica ERP.

public static void ExportSODetails()
{
 //Sales order data
 string orderType = "SO";
 string orderNbr = "000001";

 //Initialize the REST service
 RestService rs = new RestService(
 Properties.Settings.Default.AcumaticaBaseUrl,
 Properties.Settings.Default.UserName,
 Properties.Settings.Default.Password,
 Properties.Settings.Default.Company,
 Properties.Settings.Default.Branch
);

 //Specify the parameter to obtain the details of a sales order
 string parameters = "$expand=Details";

 //Retrieve a sales order by keys
 string stockItems = rs.GetByKeys("SalesOrder" , orderType + "/" + orderNbr,
 parameters);
}

Retrieval of a Record by ID

To retrieve a record by the value of the entity ID from Acumatica ERP by using the contract-based
REST API, you access the needed URL with the GET HTTP method and specify the fields that should
be returned in the parameters of the method. See the following sections for details on the URL,
parameters, HTTP method, HTTP headers, and response format.

| Working with the Contract-Based REST API | 92

The entity ID is a GUID that is assigned to each entity you work with during an Acumatica
ERP session. You can obtain the value of the entity ID from the ID property of an entity
returned from Acumatica ERP.

The records of top-level entities that you retrieve through the contract-based API have
persistent IDs, which are the values in the NoteID column of the corresponding database
tables. That is, you can use the value from the ID property of a top-level entity returned
from Acumatica ERP throughout different sessions with Acumatica ERP. However, if a record
does not have a note ID (which could be the case for detail entities, entities that correspond
to generic inquiries, or custom entities), this record is assigned the entity ID that is new for
each new session. That is, after a new login to Acumatica ERP, you cannot use the entity ID
that you received in the previous session to work with the entity.

URL

If you need to obtain a particular record with the entity ID, you use the following URL.

http://<Base endpoint URL>/<Top-level entity>/<Entity ID>

The URL has the following components:

• <Base endpoint URL> is the URL of a contract-based endpoint through which you are going to
work with Acumatica ERP. This URL has the following format: http://<Acumatica ERP instance
URL>/entity/<Endpoint name>/<Endpoint version>/.

• <Top-level entity> is the name of the entity for which you are going to retrieve a record.

• <Entity ID> is the ID of the record to be retrieved.

For example, suppose that you want to retrieve the sales order with entity ID a6295b33-c7f6-e811-
b817-00155d408001 from a local Acumatica ERP instance with the name AcumaticaDB by using the
system endpoint with the name Default and Version 18.200.001. You should use the following URL to
retrieve the sales order: http://localhost/AcumaticaDB/entity/Default/18.200.001/SalesOrder/
a6295b33-c7f6-e811-b817-00155d408001.

Parameters

You can use the following parameters when you retrieve a record from Acumatica ERP:

• $expand: To specify the linked and detail entities to be expanded

• $select: To specify the fields of the entity to be returned

• $custom: To specify the fields that are not defined in the contract to be returned

For detailed descriptions of the parameters, see Parameters for Retrieving Records.

HTTP Method

You use the GET HTTP method to retrieve records.

HTTP Headers

You can specify the following header in the request.

| Working with the Contract-Based REST API | 93

Header Description

Accept Specifies the format of the response body, which can be one of the follow-
ing:

• application/json

• text/json

Response

The response of a successful method call contains the retrieved record in JSON format in the response
body. For details on record representation in JSON format, see Representation of a Record in JSON Format.

Status Codes

The following table lists the HTTP status codes that the system returns for a request that retrieves a
record by its entity ID.

Code Description

200 The request has been completed successfully. The response body contains the
requested record.

401 The user is not signed in to the system.

403 The user has insufficient rights to access the Acumatica ERP form that corre-
sponds to the entity.

429 The number of requests has exceeded the limit imposed by the license (see Li-
cense Restrictions for API Users).

500 An internal server error has occurred.

HTTP Example

The following request shows an example of the retrieval of a SalesOrder record with detail records by
the entity ID through the REST API.

In the request example below, <Acumatica ERP instance URL> is the URL of the Acumatica
ERP instance (such as https://my.acumatica.com/MyInstance). You can omit the instance
name in the URL (such as https://my.acumatica.com) if the instance is installed in the root
of the website.

GET /a6295b33-c7f6-e811-b817-00155d408001?$expand=Details HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/SalesOrder
Accept: application/json
Content-Type: application/json

| Working with the Contract-Based REST API | 94

You can find this example in the Help-and-Training-Examples repository on GitHub.

Retrieval of Records by Conditions

To retrieve records that satisfy the specified conditions from Acumatica ERP by using the contract-
based REST API, you access the needed URL address with the GET HTTP method and specify filtering
conditions in the parameters of the method. See the following sections for details on the URL,
parameters, HTTP method, HTTP headers, and response format.

URL

If you need to retrieve the list of records that satisfies the specified conditions, you use the following
URL.

http://<Base endpoint URL>/<Top-level entity>

The URL has the following components:

• <Base endpoint URL> is the URL of the contract-based endpoint through which you are going to
work with Acumatica ERP, which has the following format: http://<Acumatica ERP instance
URL>/entity/<Endpoint name>/<Endpoint version>/.

• <Top-level entity> is the name of the entity for which you are going to retrieve the list of
records.

For example, suppose that you want to retrieve the list of stock item records from a local Acumatica
ERP instance with the name AcumaticaDB by using the system endpoint with the name Default
and Version 18.200.001. You should use the following URL to retrieve the list of records: http://
localhost/AcumaticaDB/entity/Default/18.200.001/StockItem.

Parameters

You can use the following parameters when you retrieve records from Acumatica ERP:

• $filter: To specify filtering conditions on the records to be returned

• $skip: To specify the number of records to be skipped from the list of returned records

• $top: To specify the number of records to be returned in the list

• $expand: To specify the linked and detail entities to be expanded

• $select: To specify the fields of the entity to be returned

• $custom: To specify the fields that are not defined in the contract to be returned

For detailed descriptions of the parameters, see Parameters for Retrieving Records.

HTTP Method

You use the GET HTTP method to retrieve records.

https://github.com/Acumatica/Help-and-Training-Examples

| Working with the Contract-Based REST API | 95

HTTP Headers

You can specify the following header in the request.

Header Description

Accept Specifies the format of the response body, which can be one of the follow-
ing:

• application/json

• text/json

Response

The response of a successful method call contains the retrieved records in JSON format in the response
body. For details on record representation in JSON format, see Representation of a Record in JSON Format.

Status Codes

The following table lists the HTTP status codes that the system returns for a request that retrieves
records by conditions.

Code Description

200 The request has been completed successfully. The response body contains the
list of records that satisfy the specified conditions.

401 The user is not signed in to the system.

403 The user has insufficient rights to access the Acumatica ERP form that corre-
sponds to the entity.

429 The number of requests has exceeded the limit imposed by the license (see Li-
cense Restrictions for API Users).

500 An internal server error has occurred.

HTTP Example

The following request shows an example of the retrieval of StockItem records that are Active and that
have been modified since the specified date.

In the request example below, <Acumatica ERP instance URL> is the URL of the Acumatica
ERP instance (such as https://my.acumatica.com/MyInstance). You can omit the instance
name in the URL (such as https://my.acumatica.com) if the instance is installed in the root
of the website.

GET ?$expand=WarehouseDetails&$filter=ItemStatus%20eq%20'Active'%20and%20LastModified%20gt
%20
 datetimeoffset'2019-08-18T23%3A59%3A59.999%2B04%3A00' HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/StockItem
Accept: application/json
Content-Type: application/json

| Working with the Contract-Based REST API | 96

You can find this example in the Help-and-Training-Examples repository on GitHub.

C# Example

The following code shows an example of a class that implements the retrieval of records from
Acumatica ERP through the REST API.

public class RestService: IDisposable
{
 private readonly HttpClient _httpClient;

 private readonly string _acumaticaBaseUrl;

 public RestService(
 string acumaticaBaseUrl, string userName, string password,
 string company, string branch)
 {
 _acumaticaBaseUrl = acumaticaBaseUrl;
 _httpClient = new HttpClient(
 new HttpClientHandler
 {
 UseCookies = true,
 CookieContainer = new CookieContainer()
 })
 {
 BaseAddress = new Uri(acumaticaBaseUrl +
 "/entity/Default/18.200.001/"),
 DefaultRequestHeaders =
 {
 Accept = {MediaTypeWithQualityHeaderValue.Parse("application/json")}
 }
 };
 _httpClient.PostAsJsonAsync(
 acumaticaBaseUrl + "/entity/auth/login", new
 {
 name = userName,
 password = password,
 company = company,
 branch = branch
 }).Result
 .EnsureSuccessStatusCode();
 }

 void IDisposable.Dispose()
 {
 _httpClient.PostAsync(_acumaticaBaseUrl + "/entity/auth/logout",
 new ByteArrayContent(new byte[0])).Wait();
 _httpClient.Dispose();
 }

 public string Get(string entityName, string parameters)
 {

https://github.com/Acumatica/Help-and-Training-Examples

| Working with the Contract-Based REST API | 97

 var res = _httpClient.GetAsync(
 _acumaticaBaseUrl + "/entity/Default/18.200.001/"
 + entityName + "?" + parameters).Result
 .EnsureSuccessStatusCode();

 return res.Content.ReadAsStringAsync().Result;
 }
}

The following code uses the RestService.Get() method, which is defined in the previous code
fragment, to retrieve the list of stock item records that have the Active status in Acumatica ERP and
have been modified within the past month. The code uses the $expand parameter to retrieve the
warehouse details of each record.

public static void ExportStockItems()
{
 //Initialize the REST service
 RestService rs = new RestService(
 Properties.Settings.Default.AcumaticaBaseUrl,
 Properties.Settings.Default.UserName,
 Properties.Settings.Default.Password,
 Properties.Settings.Default.Company,
 Properties.Settings.Default.Branch
);

 //Specify the parameter to filter records by status and last modified date
 string parameters1 =
 "$filter=ItemStatus eq 'Active' and LastModified gt datetimeoffset'" +
 WebUtility.UrlEncode(new DateTimeOffset(DateTime.Now.AddMonths(-1))
 .ToString("yyyy-MM-ddTHH:mm:ss.fffK")) + "'";

 //Specify the parameter to obtain vendor details
 string parameters2 = "$expand=WarehouseDetails";

 //Retrieve the list of stock items
 string stockItems = rs.Get("StockItem", parameters1 + "&" + parameters2);
}

Usage Notes

When multiple records are retrieved from Acumatica ERP through an endpoint with Contract Version 3,
the system tries to optimize the retrieval of the records and obtain all needed records in one request
to the database (instead of requesting the records one by one). If the optimization fails, the system
returns an error, which specifies the entities or fields that caused the failure of the optimized request.
To prevent the error from occurring, you can do any of the following:

• If you do not need to retrieve the entities or fields that caused the failure, you can exclude these
entities or fields from the request as follows:

• Exclude the entities from the entities specified in the $expand parameter.

• Explicitly specify the other fields to be returned (while excluding the fields that caused the
failure) by using the $select parameter.

| Working with the Contract-Based REST API | 98

• If you need to retrieve the entities or fields that caused the failure, you can retrieve the needed
records one by one either by key fields, or by IDs.

Retrieval of Data from an Inquiry Form

To retrieve data from an inquiry form of Acumatica ERP by using the contract-based REST API,
you access the needed URL with the PUT HTTP method and pass the parameters of the inquiry in
JSON format in the request body. See the following sections for details on and examples of the URL,
parameter, HTTP method, HTTP body, HTTP headers, and response format.

URL

If you need to retrieve data from an inquiry form, you use the following URL.

http://<Base endpoint URL>/<Top-level entity>

The URL includes the following components:

• <Base endpoint URL> is the URL of the contract-based endpoint through which you are going to
work with Acumatica ERP, which has the following format: http://<Acumatica ERP instance
URL>/entity/<Endpoint name>/<Endpoint version>/.

• <Top-level entity> is the name of the entity that corresponds to the inquiry form from which
you are going to retrieve data.

For example, suppose that you want to retrieve data from the Inventory Summary (IN401000) form in a
local Acumatica ERP instance with the name AcumaticaDB by using the system endpoint with the name
Default and Version 18.200.001. You would use the following URL to retrieve data: http://localhost/
AcumaticaDB/entity/Default/18.200.001/InventorySummaryInquiry.

Parameter

When you are retrieving data from an inquiry form, you should use the $expand parameter to expand
the detail entity, which contains the results of the inquiry. For a detailed description of the parameter,
see Parameters for Retrieving Records.

HTTP Method, HTTP Body

You use the PUT HTTP method and pass parameters of the inquiry in JSON format in the request body.
See below for an example of the representation of parameters of the Inventory Summary inquiry form in
JSON format.

{
 "InventoryID" : {value : "APJAM08" } ,
 "WarehouseID" : {value : "RETAIL" }
}

HTTP Headers

You can specify the following headers in the request.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2fd70552-e564-4e71-be30-e63b9415baa2
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2fd70552-e564-4e71-be30-e63b9415baa2

| Working with the Contract-Based REST API | 99

Header Description

Accept Specifies the format of the response body, which can be one of the follow-
ing:

• application/json

• text/json

Content-Type Specifies the format of the request body, which can be one of the following:

• application/json

• text/json

Response

The response of a successful method call contains the data returned from an inquiry form in JSON
format in the response body.

Status Codes

The following table lists the HTTP status codes that the system returns for a request that retrieves data
from an inquiry form.

Code Description

200 The request has been completed successfully. The response body contains the
data retrieved from the inquiry form.

400 The data specified in the request is invalid.

401 The user is not signed in to the system.

403 The user has insufficient rights to access the Acumatica ERP form that corre-
sponds to the entity.

429 The number of requests has exceeded the limit imposed by the license (see Li-
cense Restrictions for API Users).

500 An internal server error has occurred.

HTTP Example

The following request shows an example of the retrieval of data from the Inventory Summary (IN401000)
inquiry form.

In the request example below, <Acumatica ERP instance URL> is the URL of the Acumatica
ERP instance (such as https://my.acumatica.com/MyInstance). You can omit the instance
name in the URL (such as https://my.acumatica.com) if the instance is installed in the root
of the website.

PUT ?$expand=Results HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/InventorySummaryInquiry
Accept: application/json
Content-Type: application/json

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2fd70552-e564-4e71-be30-e63b9415baa2

| Working with the Contract-Based REST API | 100

{
 "InventoryID" : {value : "APJAM08" } ,
 "WarehouseID" : {value : "RETAIL" }
}

You can find this example in the Help-and-Training-Examples repository on GitHub.

C# Example

The following code shows an example of a class that implements the retrieval of data from an inquiry
form of Acumatica ERP through the REST API.

public class RestService: IDisposable
{
 private readonly HttpClient _httpClient;

 private readonly string _acumaticaBaseUrl;

 public RestService(
 string acumaticaBaseUrl, string userName, string password,
 string company, string branch)
 {
 _acumaticaBaseUrl = acumaticaBaseUrl;
 _httpClient = new HttpClient(
 new HttpClientHandler
 {
 UseCookies = true,
 CookieContainer = new CookieContainer()
 })
 {
 BaseAddress = new Uri(acumaticaBaseUrl +
 "/entity/Default/18.200.001/"),
 DefaultRequestHeaders =
 {
 Accept = {MediaTypeWithQualityHeaderValue.Parse("application/json")}
 }
 };
 _httpClient.PostAsJsonAsync(
 acumaticaBaseUrl + "/entity/auth/login", new
 {
 name = userName,
 password = password,
 company = company,
 branch = branch
 }).Result
 .EnsureSuccessStatusCode();
 }

 void IDisposable.Dispose()
 {
 _httpClient.PostAsync(_acumaticaBaseUrl + "/entity/auth/logout",
 new ByteArrayContent(new byte[0])).Wait();
 _httpClient.Dispose();

https://github.com/Acumatica/Help-and-Training-Examples

| Working with the Contract-Based REST API | 101

 }

 //Data submission
 public string Put(string entityName, string parameters, string entity)
 {
 var res = _httpClient
 .PutAsync(_acumaticaBaseUrl + "/entity/Default/18.200.001/" +
 entityName + "?" + parameters,
 new StringContent(entity, Encoding.UTF8, "application/json"))
 .Result
 .EnsureSuccessStatusCode();

 return res.Content.ReadAsStringAsync().Result;
 }
}

The following code uses the RestService.Put() method, which is defined in the previous code
fragment, to retrieve the quantities of a stock item from the Inventory Summary (IN401000) inquiry
form.

public static void ExportItemQty()
{
 //Path to a source text file that contains the parameters of
 //the inquiry in JSON format
 string entitySource = @"..\..\Input\InventorySummaryInquiry.txt";

 //REST service initialization
 RestService rs = new RestService(
 Properties.Settings.Default.AcumaticaBaseUrl,
 Properties.Settings.Default.UserName,
 Properties.Settings.Default.Password,
 Properties.Settings.Default.Company,
 Properties.Settings.Default.Branch
);

 using (StreamReader sr = new StreamReader(entitySource))
 {
 //Read inquiry parameters in JSON format from a file
 string entityAsString = sr.ReadToEnd().ToString();

 //Specify the parameter to expand results of the inquiry
 string parameters = "$expand=Results";

 //Retrieve data from the inquiry
 string stockItems =
 rs.Put("InventorySummaryInquiry", parameters, entityAsString);
 }
}

Retrieval of Records with Attributes

In Acumatica ERP, some records have attributes that are visible on the Attributes tab of the data
entry form. For details about attributes, see Attributes.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2fd70552-e564-4e71-be30-e63b9415baa2
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=51966695-681a-4ca7-9365-d1b5058a1596

| Working with the Contract-Based REST API | 102

You may have to retrieve the records along with their attributes by using the contract-based REST
API. To do this, you access the needed URL with the GET HTTP method, and in the parameters of the
request, you specify the desired record fields and the fields that correspond to the needed attributes
and attribute values. See the following sections for details on and examples of the URL, parameters,
HTTP method, HTTP headers, and response.

URL

When you retrieve records from Acumatica ERP, you use the following URL.

http://<Base endpoint URL>/<Top-level entity>

In this URL:

• <Base endpoint URL> is the URL of the contract-based endpoint through which you are going to
work with Acumatica ERP, which has the following format: http://<Acumatica ERP instance
URL>/entity/<Endpoint name>/<Endpoint version>/.

• <Top-level entity> is the name of the entity for which you are going to retrieve the list of
records along with their attributes.

For example, suppose that you want to retrieve the list of leads along with their attributes from a
local Acumatica ERP instance with the name AcumaticaDB, and you want to use the system endpoint
with the name Default and Version 18.200.001. You would use the following URL: http://localhost/
AcumaticaDB/entity/Default/18.200.001/Lead.

Parameters

When you retrieve records along with their attributes, you should use the following parameters:

• $select: To list the desired record fields and the fields that correspond to the needed attributes and
attribute values

• $expand: To expand the detail entity that contains the fields that correspond to the attributes and
attribute values

For example, for the Lead entity, to retrieve the values of attributes of records, you need to specify
Attributes/Attribute and Attributes/Value in the $select parameter, and Attributes in the
$expand parameter. To learn the exact names of the fields that correspond to the attributes for a
particular entity, you should review the fields of this entity on the Web Service Endpoints (SM207060)
form or refer to the OpenAPI specification of the endpoint.

You can use other parameters as well; see Retrieval of Records by Conditions. For a detailed description of
the $select and $expand parameters, see Parameters for Retrieving Records.

HTTP Method

You use the GET HTTP method to retrieve records along with their attributes.

HTTP Headers

You can specify the following header in the request.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c620452-c947-4bd6-a9eb-2a8fc04226be

| Working with the Contract-Based REST API | 103

Header Description

Accept Specifies the format of the response body, which can be one of the follow-
ing:

• application/json

• text/json

Response

The response of a successful method call contains the data returned from the Acumatica ERP instance
in JSON format in the response body.

See the following example of a response.

[
 ...
 {
 "id": "3647c888-0b10-e911-9fbe-7c5cf8918e20",
 "rowNumber": 2,
 "note": {
 "value": ""
 },
 "Attributes": [
 {
 "id": "f3f07fa5-9835-4824-906f-bcafec64ecf5",
 "rowNumber": 1,
 "note": {
 "value": null
 },
 "Attribute": {
 "value": "Interested in"
 },
 "Value": {
 "value": "Fruits"
 },
 "custom": {},
 "files": []
 }
],
 "FirstName": {
 "value": "Noel"
 },
 "JobTitle": {
 "value": "System Administrator"
 },
 "LastName": {
 "value": "Negron"
 },
 "custom": {},
 "files": []
 },
 ...

| Working with the Contract-Based REST API | 104

]

Status Codes

The following table lists the HTTP status codes that the system returns for a request that retrieves
records along with their attributes.

Code Description

200 The request has been completed successfully. The response body contains the
data retrieved from the Acumatica ERP instance.

400 The data specified in the request is invalid.

401 The user is not signed in to the system.

403 The user has insufficient rights to access the Acumatica ERP form that corre-
sponds to the entity.

429 The number of requests has exceeded the limit imposed by the license (see Li-
cense Restrictions for API Users).

500 An internal server error has occurred.

HTTP Example

The following request is an example of the retrieval of the FirstName, LastName, and JobTitle
fields of leads (that is, the Leads top-level entity), and the Attribute and Value fields of the leads’
attributes.

In the request example below, <Acumatica ERP instance URL> is the URL of the Acumatica
ERP instance (such as https://my.acumatica.com/MyInstance). You can omit the instance
name in the URL (such as https://my.acumatica.com) if the instance is installed in the root
of the website.

GET ?$expand=Attributes&$select=FirstName,LastName,JobTitle,Attributes/
Attribute,Attributes/Value HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/Lead
Accept: application/json

You can find this example in the Help-and-Training-Examples repository on GitHub.

Parameters for Retrieving Records

When you retrieve records from Acumatica ERP by using the contract-based REST API, you can use
the URL parameters, which are described in this topic, to filter records by the specified conditions,
expand particular entities, and retrieve the values of the fields that are not defined in the contract of
the endpoint.

https://github.com/Acumatica/Help-and-Training-Examples

| Working with the Contract-Based REST API | 105

$filter Parameter

You use this parameter to specify the conditions that determine which records should be selected from
Acumatica ERP. You use OData URI conventions to specify the value of the parameter. The following
examples illustrate the use of this parameter:

• $filter=ItemStatus eq 'Active': Obtains stock item records that have the Active status in Acumatica
ERP.

• $filter=MainContact/Email eq 'demo@gmail.com': Obtains a customer record that has the
demo@gmail.com email address. (The Email field is defined in a linked entity, which is available
through the MainContact property.)

• $filter=ItemStatus eq 'Active' and LastModified gt
datetimeoffset'2016-07-15T10%3A31%3A28.402%2B03%3A00': Obtains stock item records that
have the Active status in Acumatica ERP and have been modified later than July 15, 2016.

You should encode date and time values in URL format before passing them as the value
of the parameter. For example, you can encode the current date and time by using the
System.Net.WebUtility.URLEncode() method as follows: WebUtility.UrlEncode(new
DateTimeOffset(DateTime.Now).ToString("yyyy-MM-ddTHH:mm:ss.fffK")).

For one field, multiple conditions cannot be specified in the $filter parameter. The
only exception is the ge X and le Y condition, such as $filter=CreatedDateTime ge
DateTimeOffset'2015-12-31T00%3A00%3A00%2B000' and CreatedDateTime le
DateTimeOffset'2015-01-01T00%3A00%3A00%2B000'.

When you specify the value of the parameter, you can use the following functions as they are defined
in OData:

• substringof

• startswith

• endswith

You can also use the following custom function to filter records by the values of the elements that
are not defined in the contract of the endpoint: cf.<Type name>(f='<View name>.<Field name>'),
where <Type name> is the type of the custom element, <View name> is the name of the data view that
contains the element, and <Field name> is the name of the element.

For example, suppose that, in an extension of the Default/18.200.001 endpoint, you added the
RepairItemType field to the top-level StockItem entity. This field corresponds to the Repair Item
Type custom element added to the Item Defaults section of the General Setting tab of the Stock
Items (IN202500) form. If you want to obtain all records on the Stock Items form that have the value
of the custom Repair Item Type element equal to Battery, you would use the following parameter
string: $filter=cf.CustomStringField(f='ItemSettings.UsrRepairItemType) eq 'Battery.

http://www.odata.org/documentation/odata-version-3-0/url-conventions/
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e

| Working with the Contract-Based REST API | 106

For details on how to find out the name of a custom element and the name of its data view,
see Custom Fields.

$top Parameter

You use this parameter to specify the number of records to be returned from Acumatica ERP. That is, if
you specify N as the value of this parameter, the first N records will be returned from Acumatica ERP.
For example, if you want to obtain only first five records from the list, you use the following parameter
string: $top=5.

$skip Parameter

You use this parameter to specify the number of records to be skipped from the list of returned
records. That is, if you specify N as the value of this parameter, the first N records will be skipped from
the list of returned records. For example, if you do not want to obtain the first five records from the
list, you use the following parameter string: $skip=5.

If you use the $skip and $top parameters together, the $skip parameter is applied first.

$expand Parameter

You use this parameter to specify the linked and detail entities that should be expanded. By default, no
linked or detail entities are expanded; that is, only fields of the top-level entity are returned.

You use OData URI conventions to specify the value of this parameter. For example, if you want to obtain
the values of the warehouse detail lines of stock item records, you use the following parameter string:
$expand=WarehouseDetails.

You explicitly specify each linked or detail entity to be expanded. For example, if you specify
$expand=MainContact for the Customer entity, only the Contact linked entity of the Customer entity is
expanded, but the Address linked entity within MainContact is not. To expand the Address entity, you
should explicitly specify the Address entity to be expanded: $expand=MainContact/Address.

Contract Version 4 requires that you use the $expand=files parameter (for a top-level
entity) or the $expand=details/files parameter (for a detail or linked entity) to retrieve the
data of the files attached to the entity.

$select Parameter

You use this parameter to specify the fields of the entity to be returned from Acumatica ERP. By
default, all fields of the entity are returned.

You use OData URI conventions to specify the value of this parameter. For example, if you want to obtain
only the order types and order numbers of sales orders, you use the following parameter string:
$select=OrderType,OrderNbr.

$custom Parameter

You use this parameter to specify the fields that are not defined in the contract of the endpoint to
be returned from Acumatica ERP. That is, you can use this parameter to obtain the values of the
predefined elements on an Acumatica ERP form that are not included in the entity definition, the values
of user-defined fields, and the values of elements that were added to the Acumatica ERP form in a
customization project.

http://www.odata.org/documentation/odata-version-3-0/url-conventions/
http://www.odata.org/documentation/odata-version-3-0/url-conventions/

| Working with the Contract-Based REST API | 107

You use one of the following formats to specify the element whose value should be returned:

• If a top-level entity contains the custom field that corresponds to the element: <View
name>.<Field name>, where you replace <View name> with the name of the data view that
contains the element and <Field name> with the internal name of the element.

For example, suppose that in an extension of the Default/18.200.001 endpoint, you added the
RepairItemType field to the top-level StockItem entity. This field corresponds to the Repair Item
Type custom element added to the Item Defaults section of the General Setting tab of the
Stock Items (IN202500) form. If you want to obtain the value of this element, you use the following
parameter string: $custom=ItemSettings.UsrRepairItemType.

• If a linked or detail entity contains the custom field that corresponds to the element: <Entity
name>/<View name>.<Field name>, where you replace <Entity name> with the name of the
linked or detail entity that contains the field, <View name> with the name of the data view that
contains the element, and <Field name> with the internal name of the element.

For example, suppose that in an extension of the Default/18.200.001 endpoint, you added the
RepairItemType field to the SalesOrderDetail detail entity. This field corresponds to the Repair
Item Type custom column added to the Document Details tab of the Sales Orders (SO301000)
form. If you want to obtain the value of this element, you use the following parameter string:
$custom=Details/Transactions.UsrRepairItemType.

If you want to obtain the value of a custom field of a linked or detail entity, in addition
to specifying the $custom parameter, you have to specify this entity in the $expand
parameter.

• If the element is a user-defined field: Document.Attribute<AttributeID>, where you replace
<AttributeID> with the ID of the attribute that corresponds to the user-defined field.

For example, suppose that on the Sales Orders (SO301000) form, you have added a user-defined
field for the OPERATSYST attribute. If you want to obtain the value of this user-defined field, you
use the following parameter string: $custom=Document.AttributeOPERATSYST.

For details about user-defined fields, see User-Defined Fields.

If you want to obtain the values of multiple custom elements, you specify the custom elements to be
returned, separated by commas. For details on how to find out the field name and the name of the
data view, see Custom Fields.

Related Links

• OData URI conventions

• Custom Fields

Removal of a Record

In the contract-based REST API, you can delete the record by the values of its key fields or by its
session identifier. To delete a record from Acumatica ERP, you access the needed URL address with the
DELETE HTTP method. See the following sections for details on the possible URL, parameters, HTTP
method, and response format.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=96dd287d-b37f-4f23-b401-b3122cf8a0a1

| Working with the Contract-Based REST API | 108

If you need to delete a detail line of a record, you should use the PUT HTTP method, as
described in Update of a Record.

URL for Removing by Key Fields

If you need to delete a record with known key fields, you use the following URL.

http://<Base endpoint URL>/<Top-level entity>/<Key value 1>/<Key value 2>

The URL has the following components:

• <Base endpoint URL> is the URL of the contract-based endpoint through which you are going to
work with Acumatica ERP, which has the following format: http://<Acumatica ERP instance
URL>/entity/<Endpoint name>/<Endpoint version>/.

• <Top-level entity> is the name of the entity for which you are going to delete a record.

• <Key value 1> and <Key value 2> are the values of the key fields of the record to be deleted.
You use the number and order of key fields as they are defined on the corresponding Acumatica
ERP form.

You can pass the key fields separated by vertical bar (|) instead of slash(/).

For example, suppose that you want to delete the sales order with order type SO and order number
000123 from a local Acumatica ERP instance with the name AcumaticaDB by using the system
endpoint with the name Default and Version 18.200.001. You should use the following URL to delete
the sales order: http://localhost/AcumaticaDB/entity/Default/18.200.001/SalesOrder/
SO/000123.

URL for Removing by ID

If you need to delete a record with a known entity ID, you use the following URL. For details about
entity IDs, see Retrieval of a Record by ID.

http://<Base endpoint URL>/<Top-level entity>/<Entity ID>

You replace <Base endpoint URL> with the URL of the contract-based endpoint through which you are
going to work with Acumatica ERP, which has the following format: http://<Acumatica ERP instance
URL>/entity/<Endpoint name>/<Endpoint version>/. You replace <Top-level entity> with the
name of the entity for which you are going to retrieve the list of records. You replace <Entity ID> with
the entity ID (which is the GUID that you can obtain from the ID property of an entity returned from
Acumatica ERP).

For example, suppose that you want to delete the sales order with entity ID 03efa858-2351-4bd5-
ae06-3d9fb3b3c1e6 from a local Acumatica ERP instance with the name AcumaticaDB by using
the system endpoint with the name Default and Version 18.200.001. You should use the following
URL to delete the sales order: http://localhost/AcumaticaDB/entity/Default/18.200.001/
SalesOrder/03efa858-2351-4bd5-ae06-3d9fb3b3c1e6.

Parameters

You use no parameters when deleting a record.

| Working with the Contract-Based REST API | 109

HTTP Method

You use the DELETE HTTP method to retrieve records. You pass no content in the request body.

Response

The response of a successful method call is 204 No Content.

Status Codes

The following table lists the HTTP status codes that the system returns for a request that removes the
record by the values of its key fields or by its entity ID.

Code Description

204 The request has been completed successfully. The record is removed.

401 The user is not signed in to the system.

403 The user has insufficient rights to access the Acumatica ERP form that corre-
sponds to the entity.

429 The number of requests has exceeded the limit imposed by the license (see Li-
cense Restrictions for API Users).

500 An internal server error has occurred.

HTTP Example

The following request shows an example of the removal of the COCONUTS stock item by the value of
the key field.

In the request example below, <Acumatica ERP instance URL> is the URL of the Acumatica
ERP instance (such as https://my.acumatica.com/MyInstance). You can omit the instance
name in the URL (such as https://my.acumatica.com) if the instance is installed in the root
of the website.

DELETE /COCONUTS HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/StockItem
Accept: application/json
Content-Type: application/json

You can find this example in the Help-and-Training-Examples repository on GitHub.

C# Example

The following code shows an example of a class that implements the removal of a record from
Acumatica ERP through the REST API.

public class RestService: IDisposable
{
 private readonly HttpClient _httpClient;

 private readonly string _acumaticaBaseUrl;

https://github.com/Acumatica/Help-and-Training-Examples

| Working with the Contract-Based REST API | 110

 public RestService(
 string acumaticaBaseUrl, string userName, string password,
 string company, string branch)
 {
 _acumaticaBaseUrl = acumaticaBaseUrl;
 _httpClient = new HttpClient(
 new HttpClientHandler
 {
 UseCookies = true,
 CookieContainer = new CookieContainer()
 })
 {
 BaseAddress = new Uri(acumaticaBaseUrl +
 "/entity/Default/18.200.001/"),
 DefaultRequestHeaders =
 {
 Accept = {MediaTypeWithQualityHeaderValue.Parse("application/json")}
 }
 };
 _httpClient.PostAsJsonAsync(
 acumaticaBaseUrl + "/entity/auth/login", new
 {
 name = userName,
 password = password,
 company = company,
 branch = branch
 }).Result
 .EnsureSuccessStatusCode();
 }

 void IDisposable.Dispose()
 {
 _httpClient.PostAsync(_acumaticaBaseUrl + "/entity/auth/logout",
 new ByteArrayContent(new byte[0])).Wait();
 _httpClient.Dispose();
 }

 //Removal of a record
 public string Delete(string entityName, string keys)
 {
 var res = _httpClient.DeleteAsync(_acumaticaBaseUrl
 + "/entity/Default/18.200.001/" + entityName + "/" + keys).Result
 .EnsureSuccessStatusCode();

 return res.Content.ReadAsStringAsync().Result;
 }
}

The following code uses the RestService.Delete() method, which is defined in the previous code
fragment, to delete a stock item record.

public static void DeleteStockItem()
{
 //Stock item data

| Working with the Contract-Based REST API | 111

 string inventoryID = "COCONUTS";

 //Initialize the REST service
 RestService rs = new RestService(
 Properties.Settings.Default.AcumaticaBaseUrl,
 Properties.Settings.Default.UserName,
 Properties.Settings.Default.Password,
 Properties.Settings.Default.Company,
 Properties.Settings.Default.Branch
);

 //Remove the stock item
 string stockItem = rs.Delete("StockItem", inventoryID);
}

Execution of an Action

To perform an action by using the contract-based REST API, you access the needed URL address
with the POST HTTP method and pass the record representation in JSON format and parameters of
the action in the request body. See the following sections for details on the URL, parameters, HTTP
method, HTTP body, HTTP headers, and response format.

URL

If you need to perform an action on an Acumatica ERP form, you use the following URL.

http://<Base endpoint URL>/<Top-level entity>/<Action name>

The URL has the following components:

• <Base endpoint URL> is the URL of the contract-based endpoint through which you are going to
work with Acumatica ERP, which has the following format: http://<Acumatica ERP instance
URL>/entity/<Endpoint name>/<Endpoint version>/.

• <Top-level entity> is the name of the entity for which you are going to perform an action.

• <Action name> is the name of the action that you are going to perform.

For example, suppose that you want to confirm a shipment in a local Acumatica ERP instance with
the name AcumaticaDB by using the system endpoint with the name Default and Version 18.200.001.
You should use the following URL to confirm a shipment: http://localhost/AcumaticaDB/entity/
Default/18.200.001/Shipment/ConfirmShipment.

Parameters

You use no parameters when performing an action.

HTTP Method, HTTP Body

You use the POST HTTP method and pass the record to which the action should be applied and the
parameters of the action in the request body in JSON format as follows.

{
 "entity" : <record in JSON format>,

| Working with the Contract-Based REST API | 112

 "parameters" : <parameters in JSON format>
}

You can find details on how to represent a record in JSON format in Representation of a Record in JSON
Format.

HTTP Headers

You can specify the following headers in the request.

Header Description

Accept Specifies the format of the response body, which can be one of the follow-
ing:

• application/json

• text/json

Content-Type Specifies the format of the request body, which can be one of the following:

• application/json

• text/json

Response

If the long-running operation that was initiated by the action is completed or wasn't created, the
response is 204 No Content. If the long-running operation is in progress, the response is 202
Accepted; it has the Location header, which contains a URL that can be used to check the status of
the operation by using the GET HTTP method. When the GET HTTP method with this URL returns 204 No
Content, the operation is completed.

For Contract Version 4, in case of validation errors, the response body contains the validation error
messages in the error fields as in the following example.

"CustomerID": {
 "value": "ABARTENDE1",
 "error": "'Customer' cannot be found in the system."
 }

Status Codes

The following table lists the HTTP status codes that the system returns for a request that performs an
action.

Code Description

202 The operation is in progress. The Location header of the response contains the
URL that you can use to check the status of the operation by using the GET HTTP
method.

204 The operation that has been initiated by the action has completed.

400 The data specified in the request is invalid.

401 The user is not signed in to the system.

| Working with the Contract-Based REST API | 113

Code Description

403 The user has insufficient rights to access the Acumatica ERP form that corre-
sponds to the entity.

404 The action with such name does not exist.

422 The data specified in the request is invalid and the validation errors are returned
in the error fields of the response body.

429 The number of requests has exceeded the limit imposed by the license (see Li-
cense Restrictions for API Users).

500 An internal server error has occurred.

HTTP Example (Execution of an Action That is Present in Endpoint)

In the request examples below, <Acumatica ERP instance URL> is the URL of the
Acumatica ERP instance (such as https://my.acumatica.com/MyInstance). You can omit
the instance name in the URL (such as https://my.acumatica.com) if the instance is
installed in the root of the website.

The following request shows an example of the release of a Balanced sales order invoice through the
REST API.

POST /ReleaseSalesInvoice HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/SalesInvoice
Accept: application/json
Content-Type: application/json

{
 "entity" :
 {
 "Type" : {"value" : "Invoice"},
 "ReferenceNbr" : {"value" : "000088"}
 },
 "parameters" :
 {}
}

The following request retrieves the status of the release operation.

GET /ReleaseSalesInvoice/status/0e6cca46-cd0f-447a-a005-2a429c844a8c HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/SalesInvoice
Accept: application/json
Content-Type: application/json

You can find this example in the Help-and-Training-Examples repository on GitHub.

HTTP Example (Execution of a Custom Action)

Contract Version 4 allows you to execute actions that are not present in the endpoint. Such actions can
be defined in the forms' graphs or in customization projects.

https://github.com/Acumatica/Help-and-Training-Examples

| Working with the Contract-Based REST API | 114

If an action is defined for a UI element, you can find out the action name as follows: on the title bar
of the form, you click Customization > Inspect Element and click the needed element on the form.
In the Element Properties dialog box, which opens, you find the action name in the Action Name
element.

If an action is executed with parameters, you must also know the parameters' names and the view
in which the parameters are defined. For an action defined for a UI element, you can find out this
information as follows: execute the action from the UI, press Ctrl+Alt and click the paremeter's input
box. In the Element Properties dialog box, which opens, you find the parameter name in the Data
Field element and the view name in the View Name element.

For invocation of a custom action, an HTTP body with the following pattern is used.

{
 "entity": {
 "id": "<entity id>"
 },
 "parameters": {
 "custom": {
 ...
 }
 }
}

In this pattern, the following information is provided:

• <entity id> is the identifier of the entity for which you need to invoke a custom action. For more
information, see Retrieval of a Record by ID. You can also use the key fields to define the entity.

• The custom collection contains the parameters of the action that are normally entered in a dialog
box that the system displays upon the execution of the action.

For example, suppose that you want to invoke the Close action of some Case entity in a local
Acumatica ERP instance with the name AcumaticaDB by using the system endpoint with the name
Default and Version 20.200.001. You should use the following URL to invoke the action: http://
localhost/AcumaticaDB/entity/Default/20.200.001/Case/Close. The Close action has the only
Reason parameter, which is defined in the FilterPreview view. Following is an example of the HTTP body
you use.

{
 "entity": {
 "id": "e3f46a39-1a14-e911-816f-bc920a5e0ac8"
 },
 "parameters": {
 "custom": {
 "FilterPreview": {
 "Reason": {
 "type" : "CustomStringField",
 "value" : "Abandoned"
 }
 }
 }
 }
}

| Working with the Contract-Based REST API | 115

C# Example

The following code shows an example of a class that implements the execution of an action in
Acumatica ERP through the REST API.

public class RestService: IDisposable
{
 private readonly HttpClient _httpClient;

 private readonly string _acumaticaBaseUrl;

 public RestService(
 string acumaticaBaseUrl, string userName, string password,
 string company, string branch)
 {
 _acumaticaBaseUrl = acumaticaBaseUrl;
 _httpClient = new HttpClient(
 new HttpClientHandler
 {
 UseCookies = true,
 CookieContainer = new CookieContainer()
 })
 {
 BaseAddress = new Uri(acumaticaBaseUrl +
 "/entity/Default/18.200.001/"),
 DefaultRequestHeaders =
 {
 Accept = {MediaTypeWithQualityHeaderValue.Parse("application/json")}
 }
 };
 _httpClient.PostAsJsonAsync(
 acumaticaBaseUrl + "/entity/auth/login", new
 {
 name = userName,
 password = password,
 company = company,
 branch = branch
 }).Result
 .EnsureSuccessStatusCode();
 }

 void IDisposable.Dispose()
 {
 _httpClient.PostAsync(_acumaticaBaseUrl + "/entity/auth/logout",
 new ByteArrayContent(new byte[0])).Wait();
 _httpClient.Dispose();
 }

 //Invocation of an action
 public string Post(string entityName, string actionName,
 string entityAndParameters)
 {
 var result = _httpClient
 .PostAsync(_acumaticaBaseUrl + "/entity/Default/18.200.001/"

| Working with the Contract-Based REST API | 116

 + entityName + "/" + actionName,
 new StringContent(entityAndParameters,
 Encoding.UTF8, "application/json"));
 var res = result.Result;
 var cont = res.Content.ReadAsStringAsync().Result;
 res.EnsureSuccessStatusCode();

 var dt = DateTime.Now;
 while (true)
 {
 switch (res.StatusCode)
 {
 case HttpStatusCode.NoContent:
 return "No content";
 case HttpStatusCode.Accepted:
 if ((DateTime.Now - dt).Seconds > 30)
 throw new TimeoutException();
 Thread.Sleep(500);
 res = _httpClient.GetAsync(res.Headers.Location)
 .Result.EnsureSuccessStatusCode();
 continue;
 default:
 throw new InvalidOperationException(
 "Invalid process result: " + res.StatusCode);
 }
 }
 }
}

The following code uses the RestService.Post() method, which is defined in the previous code
fragment, to release a sales order invoice.

public static void ReleaseSOInvoice()
{
 //Invoice to be released
 string invoice = "{\"Type\" : {value : \"Invoice\"}, "
 + "\"ReferenceNbr\" : {value : \"000088\"} }";

 //Initialize the REST service
 RestService rs = new RestService(
 Properties.Settings.Default.AcumaticaBaseUrl,
 Properties.Settings.Default.UserName,
 Properties.Settings.Default.Password,
 Properties.Settings.Default.Company,
 Properties.Settings.Default.Branch
);

 //Release the invoice
 invoice = rs.Post("SalesInvoice", "ReleaseSalesInvoice",
 "{\"entity\" : " + invoice + ", \"parameters\" : null}");
}

| Working with the Contract-Based REST API | 117

Attachment of a File to a Record

When you need to attach a file to a record by using the contract-based REST API, you access the
needed URL address with the PUT HTTP method and pass the file in the request body. See the following
sections for details on the URL, parameters, HTTP method, HTTP header, and response format.

URL

If you need to attach a file to a record in Acumatica ERP, you use the following URL.

http://<Base endpoint URL>/<Top-level entity>/<Key value 1>/<Key value 2>/files/<File name>

The URL has the following components:

• <Base endpoint URL> is the URL of the contract-based endpoint through which you are going to
work with Acumatica ERP, which has the following format: http://<Acumatica ERP instance
URL>/entity/<Endpoint name>/<Endpoint version>/.

• <Top-level entity> is the name of the entity to which you are going to attach a file.

• <Key value 1> and <Key value 2> are the values of the key fields of the record to which you
are going to attach a file. You use the number and order of key fields as they are defined on the
corresponding Acumatica ERP form.

You can pass the key fields separated by vertical bar (|) instead of slash(/).

• <File name> is the name of the file that you are going to attach with the extension.

For example, suppose that you want to attach the Sample.jpg file to the stock item record with
inventory ID AALEGO500 in a local Acumatica ERP instance with name AcumaticaDB by using the
system endpoint with the name Default and Version 18.200.001. You should use the following URL
to attach the file: http://localhost/AcumaticaDB/entity/Default/18.200.001/StockItem/
AALEGO500/files/Sample.jpg.

Parameters

You use no parameters when you attach a file to a record.

HTTP Method

You use the PUT HTTP method and pass the file to be attached in the request body.

HTTP Headers

You can specify the following header in the request.

| Working with the Contract-Based REST API | 118

Header Description

Accept Specifies the format of the response body, which can be one of the follow-
ing:

• application/json

• text/json

Response

The response of a successful method call is 204 No Content.

Status Codes

The following table lists the HTTP status codes that the system returns for a request that attaches a file
to a record.

Code Description

204 The request has been completed successfully. The file is attached. The Loca-
tion header of the response contains the URL that you can use to retrieve the
file from the system.

401 The user is not signed in to the system.

403 The user has insufficient rights to access the Acumatica ERP form that corre-
sponds to the entity.

429 The number of requests has exceeded the limit imposed by the license (see Li-
cense Restrictions for API Users).

500 An internal server error has occurred.

HTTP Example

The following request shows an example of the attachment of the T2MCRO.jpg file to the EJECTOR03
stock item.

In the request example below, <Acumatica ERP instance URL> is the URL of the Acumatica
ERP instance (such as https://my.acumatica.com/MyInstance). You can omit the instance
name in the URL (such as https://my.acumatica.com) if the instance is installed in the root
of the website.

PUT /EJECTOR03/files/T2MCRO.jpg HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/StockItem
Accept: application/json
Content-Type: application/octet-stream

"<file contents here>"

| Working with the Contract-Based REST API | 119

You can find this example in the Help-and-Training-Examples repository on GitHub.

C# Example

The following code shows an example of a class that implements the attachment of a file to a record in
Acumatica ERP through the REST API.

public class RestService: IDisposable
{
 private readonly HttpClient _httpClient;

 private readonly string _acumaticaBaseUrl;

 public RestService(
 string acumaticaBaseUrl, string userName, string password,
 string company, string branch)
 {
 _acumaticaBaseUrl = acumaticaBaseUrl;
 _httpClient = new HttpClient(
 new HttpClientHandler
 {
 UseCookies = true,
 CookieContainer = new CookieContainer()
 })
 {
 BaseAddress = new Uri(acumaticaBaseUrl +
 "/entity/Default/18.200.001/"),
 DefaultRequestHeaders =
 {
 Accept = {MediaTypeWithQualityHeaderValue.Parse("application/json")}
 }
 };
 _httpClient.PostAsJsonAsync(
 acumaticaBaseUrl + "/entity/auth/login", new
 {
 name = userName,
 password = password,
 company = company,
 branch = branch
 }).Result
 .EnsureSuccessStatusCode();
 }

 void IDisposable.Dispose()
 {
 _httpClient.PostAsync(_acumaticaBaseUrl + "/entity/auth/logout",
 new ByteArrayContent(new byte[0])).Wait();
 _httpClient.Dispose();
 }

 //Attachment of a file to a record
 public string PutFile(string entityName, string keys,

https://github.com/Acumatica/Help-and-Training-Examples

| Working with the Contract-Based REST API | 120

 string fileName, System.IO.Stream file)
 {
 var res = _httpClient.PutAsync(_
 acumaticaBaseUrl + "/entity/Default/18.200.001/"
 + entityName + "/" + keys + "/files/" + fileName,
 new StreamContent(file)).Result
 .EnsureSuccessStatusCode();
 return res.Content.ReadAsStringAsync().Result;
 }
}

The following code uses the RestService.PutFile() method, which is defined in the previous code
fragment, to attach a file to a stock item record.

public static void PutFile()
{
 //Input data
 string inventoryID = "EJECTOR03";
 string fileName = "T2MCRO.jpg";
 string entitySource = @"..\..\SourceFiles\T2MCRO.jpg";

 //Initialize the REST service
 RestService rs = new RestService(
 Properties.Settings.Default.AcumaticaBaseUrl,
 Properties.Settings.Default.UserName,
 Properties.Settings.Default.Password,
 Properties.Settings.Default.Company,
 Properties.Settings.Default.Branch
);

 using (StreamReader sr = new StreamReader(entitySource))
 {
 //Attach a file to a stock item record
 string stockItem = rs.PutFile("StockItem", inventoryID, fileName,
 sr.BaseStream);
 }

}

Retrieval of a File Attached to a Record

To retrieve a file that is attached to a record from Acumatica ERP by using the contract-based REST
API, you access the URL address of the file with the GET HTTP method. See the following sections for
details on the URL, parameters, HTTP method, HTTP header, and response format.

URL

If you need to obtain a file attached to a record, you use the following URL.

http://<Base endpoint URL>/files/<File identifier>

The URL has the following components:

| Working with the Contract-Based REST API | 121

• <Base endpoint URL> is the URL of the contract-based endpoint through which you are going to
work with Acumatica ERP, which has the following format: http://<Acumatica ERP instance
URL>/entity/<Endpoint name>/<Endpoint version>/.

• <File identifier> is the internal identifier of the file in the system.

To get this URL for a particular file attached to a record, you should obtain the record from Acumatica
ERP and, in the returned JSON representation of the record, find the value of the href property of the
needed file in the files array. For information on how to retrieve a record from Acumatica ERP, see
Retrieval of a Record by Key Fields and Retrieval of a Record by ID.

For example, suppose that you retrieved the stock item record that contains the following files array
from a local Acumatica ERP instance with the name AcumaticaDB.

{
 ...,
 "files":[
 {
 "id":"9be45eb7-f97d-400b-96a5-1c4cf82faa96",
 "filename":"Stock Items (AAMACHINE1)\\T2MCRO.jpg",
 "href":
"/AcumaticaDB/entity/Default/18.200.001/files/9be45eb7-f97d-400b-96a5-1c4cf82faa96"
 }
]
}

You should use the following URL to retrieve the T2MCRO.jpg file attached to the stock item
record: http://localhost/AcumaticaDB/entity/Default/18.200.001/files/9be45eb7-
f97d-400b-96a5-1c4cf82faa96.

Parameters

You use no parameters when retrieving a file.

HTTP Method

You use the GET HTTP method to retrieve a file.

HTTP Headers

You can specify the following header in the request.

Header Description

Accept Specifies the format of the response body, which can be one of the follow-
ing:

• application/json

• text/json

Response

The response of a successful method call contains the retrieved file in the response body.

| Working with the Contract-Based REST API | 122

Status Codes

The following table lists the HTTP status codes that the system returns for a request that retrieves a
file attached to a record.

Code Description

200 The request has been completed successfully. The response contains the re-
quested file.

401 The user is not signed in to the system.

403 The user has insufficient rights to access the Acumatica ERP form that corre-
sponds to the entity.

429 The number of requests has exceeded the limit imposed by the license (see Li-
cense Restrictions for API Users).

500 An internal server error has occurred.

HTTP Example

In the request examples below, <Acumatica ERP instance URL> is the URL of the
Acumatica ERP instance (such as https://my.acumatica.com/MyInstance). You can omit
the instance name in the URL (such as https://my.acumatica.com) if the instance is
installed in the root of the website.

The following request shows an example of the retrieval of the list of files attached to the EJECTOR03
stock item.

GET /EJECTOR03?$select=InventoryID HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/StockItem
Accept: application/json
Content-Type: application/json

Suppose that the request above returns the following response body.

{
 "id": "a0f8594a-7de2-e811-b816-00155d408001",
 "rowNumber": 1,
 "note": {
 "value": ""
 },
 "InventoryID": {
 "value": "EJECTOR03"
 },
 "custom": {},
 "files": [
 {
 "id": "dbcf82e7-660a-4d56-9b64-1cb654660ddb",
 "filename": "Stock Items (EJECTOR03)\\T2MCRO.jpg",
 "href": "[/<Acumatica ERP instance name>]/entity/Default/18.200.001/
 files/dbcf82e7-660a-4d56-9b64-1cb654660ddb"
 }
]

| Working with the Contract-Based REST API | 123

}

The following request retrieves the T2MCRO.jpg file attached to the EJECTOR03 stock item by the ID of
the file.

GET /dbcf82e7-660a-4d56-9b64-1cb654660ddb HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/files
Accept: application/octet-stream
Content-Type: application/json

You can find this example in the Help-and-Training-Examples repository on GitHub.

C# Example

The following code shows an example of a class that implements the retrieval of a file attached to a
record in Acumatica ERP through the REST API.

public class RestService: IDisposable
{
 private readonly HttpClient _httpClient;

 private readonly string _acumaticaBaseUrl;

 public RestService(
 string acumaticaBaseUrl, string userName, string password,
 string company, string branch)
 {
 _acumaticaBaseUrl = acumaticaBaseUrl;
 _httpClient = new HttpClient(
 new HttpClientHandler
 {
 UseCookies = true,
 CookieContainer = new CookieContainer()
 })
 {
 BaseAddress = new Uri(acumaticaBaseUrl +
 "/entity/Default/18.200.001/"),
 DefaultRequestHeaders =
 {
 Accept = {MediaTypeWithQualityHeaderValue.Parse("application/json")}
 }
 };
 _httpClient.PostAsJsonAsync(
 acumaticaBaseUrl + "/entity/auth/login", new
 {
 name = userName,
 password = password,
 company = company,
 branch = branch
 }).Result
 .EnsureSuccessStatusCode();
 }

https://github.com/Acumatica/Help-and-Training-Examples

| Working with the Contract-Based REST API | 124

 void IDisposable.Dispose()
 {
 _httpClient.PostAsync(_acumaticaBaseUrl + "/entity/auth/logout",
 new ByteArrayContent(new byte[0])).Wait();
 _httpClient.Dispose();
 }

 //Retrieval of a record by key fields
 public string GetByKeys(string entityName, string keys, string parameters)
 {
 var res = _httpClient.GetAsync(
 _acumaticaBaseUrl + "/entity/Default/18.200.001/" +
 entityName + "/" + keys + "?" + parameters)
 .Result
 .EnsureSuccessStatusCode();

 return res.Content.ReadAsStringAsync().Result;
 }

 //Retrieving of a file
 public System.IO.Stream GetFile(string href)
 {
 var res = _httpClient.GetAsync(href).Result.EnsureSuccessStatusCode();
 return res.Content.ReadAsStreamAsync().Result;
 }
}

The following code uses the RestService.GetByKeys() and RestService.GetFile() methods, which
are defined in the previous code fragment, to retrieve a file attached to a stock item record from
Acumatica ERP.

public static void GetFile()
{
 //Specify stock item data
 string inventoryID = "AAMACHINE1";

 //Initialize the REST service
 RestService rs = new RestService(
 Properties.Settings.Default.AcumaticaBaseUrl,
 Properties.Settings.Default.UserName,
 Properties.Settings.Default.Password,
 Properties.Settings.Default.Company,
 Properties.Settings.Default.Branch
);

 //Retrieve the stock item
 string stockItem = rs.GetByKeys("StockItem", inventoryID, null);

 //Find href and the file name of the needed file
 //(using Newtonsoft.Json.Linq and System.IO)
 JObject jItem = JObject.Parse(stockItem);
 JArray jFiles = jItem.Value<JArray>("files");
 string fileRef = jFiles[0].Value<string>("href");
 string fullFileName = jFiles[0].Value<string>("filename");
 string fileName = Path.GetFileName(fullFileName);

| Working with the Contract-Based REST API | 125

 //Obtain the file
 Stream file = rs.GetFile(fileRef);

 using (var outputFile = File.Create(@"..\..\Output\" + fileName))
 {
 file.Seek(0, SeekOrigin.Begin);
 file.CopyTo(outputFile);
 }
}

Retrieval of the Schema of Custom Fields

To retrieve the schema of custom fields of an entity—that is, the field name, view name, and type of
the fields that are not defined in the contract of the endpoint for this entity—by using the contract-
based REST API, you access the needed URL with the GET HTTP method. See the following sections for
details on and examples of the URL, parameters, HTTP method, HTTP header, and response format.

Custom fields can correspond to the following elements:

• The predefined elements on an Acumatica ERP form that are not included in the entity
definition

• The elements that were added to the Acumatica ERP form in a customization project

• The user-defined fields

URL

If you need to obtain the schema of custom fields of an entity, you use the following URL.

http://<Base endpoint URL>/<Top-level entity>/$adHocSchema

The URL includes the following components:

• <Base endpoint URL> is the URL of the contract-based endpoint through which you are going to
work with Acumatica ERP, which has the following format: http://<Acumatica ERP instance
URL>/entity/<Endpoint name>/<Endpoint version>/.

• <Top-level entity> is the name of the entity for which you are going to retrieve the schema of
custom fields.

For example, suppose that you want to obtain the schema of custom fields of a stock item entity
from a local Acumatica ERP instance with the name AcumaticaDB by using the system endpoint with
the name Default and Version 18.200.001. You would use the following URL to retrieve the schema:
http://localhost/AcumaticaDB/entity/Default/18.200.001/StockItem/$adHocSchema.

Parameters

You use no parameters when retrieving the schema of custom fields of an entity.

HTTP Method

You use the GET HTTP method to retrieve the schema of custom fields.

| Working with the Contract-Based REST API | 126

HTTP Headers

You can specify the following header in the request.

Header Description

Accept Specifies the format of the response body, which can be one of the follow-
ing:

• application/json

• text/json

Response

The response of a successful method call contains the schema of custom fields in JSON format in the
response body.

Status Codes

The following table lists the HTTP status codes that the system returns for a request that retrieves the
schema of the custom fields of an entity.

Code Description

200 The request has been completed successfully. The response contains the field
name, view name, and type of the fields that are not defined in the contract of
the endpoint for the entity.

401 The user is not signed in to the system.

403 The user has insufficient rights to access the Acumatica ERP form that corre-
sponds to the entity.

429 The number of requests has exceeded the limit imposed by the license (see Li-
cense Restrictions for API Users).

500 An internal server error has occurred.

HTTP Example

The following request shows an example of the retrieval of the schema of custom fields of the
StockItem entity.

In the request example below, <Acumatica ERP instance URL> is the URL of the Acumatica
ERP instance (such as https://my.acumatica.com/MyInstance). You can omit the instance
name in the URL (such as https://my.acumatica.com) if the instance is installed in the root
of the website.

GET /$adHocSchema HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/StockItem
Accept: application/json
Content-Type: application/json

| Working with the Contract-Based REST API | 127

You can find this example in the Help-and-Training-Examples repository on GitHub.

Retrieval of the Acumatica ERP Version and the List of
Endpoints

To obtain the Acumatica ERP version and the list of contract-based endpoints available in this version
by using the REST API, you access the needed URL with the GET HTTP method. The remainder of this
topic provides details on and examples of the URL, the parameters, the headers, and the format of the
response.

If the request is sent without the authentication information, the list contains only the endpoints
available in the system by default. If the request is sent with the authentication information for a
particular tenant, the list also includes the custom endpoints configured in this tenant of the Acumatica
ERP instance.

URL

You use the following URL.

http://<Acumatica ERP instance URL>/entity

In this URL, <Acumatica ERP instance URL> is the URL of the Acumatica ERP instance for which you
want to obtain information about the version and endpoints.

For example, suppose that you work with a local Acumatica ERP instance with the name AcumaticaDB.
You would use the following URL to retrieve the information: http://localhost/AcumaticaDB/entity.

Parameters

You use no parameters when you retrieve the Acumatica ERP version and the list of contract-based
endpoints available in this version.

HTTP Method

You use the GET HTTP method to retrieve the Acumatica ERP version and the list of contract-based
endpoints available in this version.

Headers

You can specify the following header in the request.

https://github.com/Acumatica/Help-and-Training-Examples

| Working with the Contract-Based REST API | 128

Header Description

Accept Optional. Specifies the format of the response body, which can be one of
the following:

• application/json (default)

• text/json

• application/xml

• text/xml

Response

The response of a successful method call contains the Acumatica ERP version and the list of contract-
based endpoints available in this version in the response body. The list of endpoints in the response
includes the custom endpoints configured in a particular tenant of the Acumatica ERP instance if the
request is sent along with the authentication information. You can obtain the response in JSON or XML
format.

The following example shows the response in JSON format.

{
 "version": {
 "acumaticaBuildVersion": "19.191.0093",
 "databaseVersion": "19.191.0093"
 },
 "endpoints": [
 {
 "name": "Default",
 "version": "17.200.001",
 "href": "/AcumaticaERP/entity/Default/17.200.001/"
 },
 {
 "name": "DeviceHub",
 "version": "17.200.001",
 "href": "/AcumaticaERP/entity/DeviceHub/17.200.001/"
 },
 {
 "name": "POS",
 "version": "17.200.001",
 "href": "/AcumaticaERP/entity/POS/17.200.001/"
 },
 {
 "name": "Default",
 "version": "18.200.001",
 "href": "/AcumaticaERP/entity/Default/18.200.001/"
 },
 {
 "name": "Default",
 "version": "6.00.001",
 "href": "/AcumaticaERP/entity/Default/6.00.001/"
 }
]

| Working with the Contract-Based REST API | 129

}

Status Codes

The following table lists the HTTP status codes that the system returns for a request that retrieves the
Acumatica ERP version and the list of endpoints.

Code Description

200 The request has been completed successfully. The response body contains the
Acumatica ERP version and the list of contract-based endpoints available in this
version.

429 The number of requests has exceeded the limit imposed by the license (see Li-
cense Restrictions for API Users).

500 An internal server error has occurred.

HTTP Example

The following request obtains the Acumatica ERP version and the list of contract-based endpoints
available in this version.

In the request example below, <Acumatica ERP instance URL> is the URL of the Acumatica
ERP instance (such as https://my.acumatica.com/MyInstance). You can omit the instance
name in the URL (such as https://my.acumatica.com) if the instance is installed in the root
of the website.

GET /entity HTTP/1.1
Host: [<Acumatica ERP instance URL>]
Accept: application/json

You can find this example in the Help-and-Training-Examples repository on GitHub.

OpenAPI Specification

You can retrieve the swagger.json file with the OpenAPI specification of the endpoint by using the
following URL.

http://<Acumatica ERP instance URL>/entity/swagger.json

In this URL, <Acumatica ERP instance URL> is the URL of the Acumatica ERP instance.

Multi-Language Fields

For some text boxes on Acumatica ERP forms, users can type values in multiple languages if multiple
locales are configured in Acumatica ERP. For example, if your Acumatica ERP instance has English
and French locales activated and multilingual user input configured, you can specify the value of the
Description box on the Stock Items (IN202500) form in English and French. For the list of elements
that support multiple languages, see Boxes that Have Multi-Language Support. For details on how to turn
on multilingual user input, see Enabling Multilingual User Input.

https://github.com/Acumatica/Help-and-Training-Examples
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=837d92c1-eeba-4023-8f83-23a7023a48c7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b43ca9dd-782a-4fdc-b9c3-f3e9ddd2d8ac

| Working with the Contract-Based REST API | 130

Specifying Localized Values of a Multi-Language Field

When you need to specify localized values of a text box by using the contract-based REST API, you
specify the value of the field that corresponds to the box as a string in JSON format with the localized
values. In this string, you use the two-letter ISO code of the language with which the value should be
associated.

In the example that is mentioned at the beginning of the topic, if you need to specify values in English
and French in the Description box on the Stock Items form, you specify the value of the Description
field of the StockItem entity in the following format: [{en:English description},{fr:French
description}]. See below for an example of a stock item record with localized Description field
values in JSON format. For details on how to pass the record to the service, see Creation of a Record and
Update of a Record.

{
 "InventoryID" : {value : "BASESERV" } ,
 "Description" : {value : "[{en:Item},{fr:Pièce}]" }
}

In the JSON-formatted string, you should specify the actual values of the field in all
languages that are configured for multilingual user input. If you specify the values of
the field in particular languages, the values of the field in other languages configured
for multilingual user input become empty. For example, suppose that in your instance of
Acumatica ERP, multi-language fields can have values in English and French. If you pass the
value of a field in the following format [{en:English description}], the French value of
the field becomes empty.

If you specify the value of a multi-language field as plain text, this text is saved as the value of the
corresponding box in the current language of Acumatica ERP (that is, the language that you specified
when you logged in to Acumatica ERP). For details on how to specify the language on login through the
contract-based REST API, see Sign-In to the Service.

Retrieving Localized Values of a Multi-Language Field

If you need to retrieve localized values of a text box that supports multiple input languages, you
retrieve the value a special custom field that contains all localized values of the text box and has the
Translations suffix in its field name.

To find out the field name and the view name of the needed custom field with localized values, you
find out the field name and the view name of the multi-language text box and append Translations to
the field name. (For details on how to find out the field name and the view name of an element on the
form, see Custom Fields.) For example, the multi-language Description box on the Stock Items form has
the Descr field name and the Item view name; therefore, the custom field that contains the localized
descriptions of a stock item has the DescrTranslations field name and the Item view name.

You obtain the value of the needed custom field by using the $custom parameter. For example,
suppose that you need to obtain the localized values of the Description element of the Stock
Items form. In this case, you should use the following parameter string in the request URL:
$custom=Item.DescrTranslations. For details on how to retrieve a record, see Retrieval of a Record by
Key Fields and Retrieval of Records by Conditions.

The returned value of a Translations custom field is a string in JSON format with the available
localized values of the field. The language to which the value belongs is identified by the two-letter
ISO code of the language. For example, suppose that the Description element of the Stock Items form

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e

| Working with the Contract-Based REST API | 131

has the value Item in English and Pièce in French. In this case, the value of the DescrTranslations
custom field, which corresponds to the Description element, is the following string: [{en:Item},
{fr:Pièce}].

Related Links

• Locales and Languages

• Boxes that Have Multi-Language Support

• Custom Fields

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b43ca9dd-782a-4fdc-b9c3-f3e9ddd2d8ac
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=837d92c1-eeba-4023-8f83-23a7023a48c7

| Working with the Contract-Based SOAP API | 132

Working with the Contract-Based SOAP API
The contract-based SOAP application programming interface (API) of Acumatica ERP provides the
SOAP interface of the Acumatica ERP contract-based web services through which external systems
can get data records from Acumatica ERP, process these records, and save new or updated records to
Acumatica ERP.

This chapter includes the topics that are specific for the contract-based SOAP API. For general
information on the contract-based web services, see Configuring the Contract-Based REST and SOAP API.
You can find examples of how to use the contract-based SOAP API in Contract-Based API Examples and in
the following training courses:

• I300 Web Services: Basic

• I310 Web Services: Advanced

• I320 Web Services: Data Manipulation

For the API reference, see Contract-Based SOAP API Reference.

In This Chapter

• Multi-Language Fields

• To Configure the Client Application

Multi-Language Fields

For some text boxes on Acumatica ERP forms, users can type values in multiple languages if multiple
locales are configured in Acumatica ERP. For example, if your Acumatica ERP instance has English
and French locales activated and multilingual user input configured, you can specify the value of the
Description box on the Stock Items (IN202500) form in English and French. For the list of elements
that support multiple languages, see Boxes that Have Multi-Language Support. For details on how to turn
on multilingual user input, see Enabling Multilingual User Input.

Specifying Localized Values of a Multi-Language Field

When you need to specify localized values of a text box by using the contract-based SOAP API, you
specify the value of the field that corresponds to the box as a string in JSON format with the localized
values. In this string, you use the two-letter ISO code of the language with which the value should be
associated.

In the example that is mentioned at the beginning of the topic, if you need to specify values in English
and French in the Description box on the Stock Items form, you specify the value of the Description
field of the StockItem entity in the following format: [{en:English description},{fr:French
description}], as shown in the following code fragment.

public static void CreateStockItem(DefaultSoapClient soapClient)
{
 //Specify the values of the new stock item
 StockItem stockItemToBeCreated = new StockItem
 {
 InventoryID = new StringValue { Value = "BASESERV" },
 Description = new StringValue { Value = "[{en:Item},{fr:Pièce}]" },

https://openuni.acumatica.com/courses/integration/i300-web-services-basic-data-retrieval/
https://openuni.acumatica.com/courses/integration/i310-web-services-advanced-data-retrieval/
https://openuni.acumatica.com/courses/integration/i320-web-services-data-manipulation/
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=837d92c1-eeba-4023-8f83-23a7023a48c7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b43ca9dd-782a-4fdc-b9c3-f3e9ddd2d8ac
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e

| Working with the Contract-Based SOAP API | 133

 ItemClass = new StringValue { Value = "STOCKITEM" },
 };
 //Create a stock item with the specified values
 StockItem newStockItem = (StockItem)soapClient.Put(stockItemToBeCreated);
}

In the JSON-formatted string, you should specify the actual values of the field in all
languages that are configured for multilingual user input. If you specify the values of
the field in particular languages, the values of the field in other languages configured
for multilingual user input become empty. For example, suppose that in your instance of
Acumatica ERP, multi-language fields can have values in English and French. If you pass the
value of a field in the following format [{en:English description}], the French value of
the field becomes empty.

If you specify the value of a multi-language field as plain text, this text is saved as the value of the
corresponding box in the current language of Acumatica ERP (that is, the language that you specified
when you logged in to Acumatica ERP). For details on how to specify the language on login through the
contract-based SOAP API, see Login() Method.

Retrieving Localized Values of a Multi-Language Field

If you need to retrieve localized values of a text box that supports multiple input languages, you
retrieve the value of a special custom field that contains all localized values of the text box and has the
Translations suffix in its field name.

To find out the field name and the view name of the needed custom field with localized values, you
find out the field name and the view name of the multi-language text box and append Translations to
the field name. (For details on how to find out the field name and the view name of an element on the
form, see Custom Fields.) For example, the multi-language Description box on the Stock Items form has
the Descr field name and the Item view name; therefore, the custom field that contains the localized
descriptions of a stock item has the DescrTranslations field name and the Item view name.

The following code shows how to retrieve the localized values of the Description element of the Stock
Items form. (The code below uses Contract Version 2.)

public static void ExportStockItem(DefaultSoapClient soapClient)
{
 StockItem stockItem = new StockItem
 {
 InventoryID = new StringValue { Value = "BASESERV" },
 //Specify the localized values to be returned
 CustomFields = new[]
 {
 new CustomStringField
 {
 fieldName = "DescrTranslations",
 viewName = "Item",
 Value = new StringReturn(),
 }
 }
 };
 //Retrieve the stock item record
 StockItem stockItemToRetrieve = (StockItem)client.Get(stockItem);
}

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e

| Working with the Contract-Based SOAP API | 134

The returned value of a Translations custom field is a string in JSON format with the available
localized values of the field. The language to which the value belongs is identified by the two-letter
ISO code of the language. For example, suppose that the Description element of the Stock Items form
has the value Item in English and Pièce in French. In this case, the value of the DescrTranslations
custom field, which corresponds to the Description element, is the following string: [{en:Item},
{fr:Pièce}].

Related Links

• Locales and Languages

• Boxes that Have Multi-Language Support

• Custom Fields

To Configure the Client Application

In this topic, you will learn how to import the WSDL description of the Acumatica ERP web services into
a Visual Studio project.

The procedure below is described based on an example of the creation of a console project with the
MyBIIntegration name that uses the Default endpoint of the 18.200.001 version. You can create
another type of Visual Studio project with another name and use any other endpoint in this procedure.

The instructions in this topic have been created for Visual Studio 2019.

Importing the WSDL File into a Visual Studio Project

To configure the client application, do the following:

1. Open Visual Studio, and create a new Visual C# console application with the MyBIIntegration
name.

To create a console application, click File > New > Project on the main menu of Visual
Studio. In the Create a new project dialog box, which appears, select the Console App
(.Net Framework) C# template and click Next. In the Configure your new project
dialog box, specify the name and location of the solution, select the .NET Framework 4.8
framework version, and click Create.

The MyBIIntegration application that you have created contains the Program.cs file with the
Program class.

2. Add to the project a reference to the Acumatica ERP web service as follows:

a. On the main menu of Visual Studio, click Project > Add Service Reference.

b. In the Address box of the Add Service Reference dialog box, which opens, specify the URL
of the Default endpoint of the 18.200.001 version (see Item 1 in the following screenshot).

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b43ca9dd-782a-4fdc-b9c3-f3e9ddd2d8ac
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=837d92c1-eeba-4023-8f83-23a7023a48c7

| Working with the Contract-Based SOAP API | 135

To copy the URL of the service, on the Web Service Endpoints (SM207060) form, select
Default in the Endpoint Name box and 18.200.001 in the Endpoint Version box,
click View Endpoint Service > WSDL on the form toolbar, and copy the URL from
the address line in the browser for the page that opens. In this example, the URL is
http://localhost/MyStoreInstance/entity/Default/18.200.001?wsdl.

c. Click Go (Item 2) to make Visual Studio connect to the web service.

If your Acumatica ERP website uses a self-signed certificate, Visual Studio displays
security alert windows with warnings on the certificate. Click Yes in these windows
to proceed.

d. In the Namespace box, type Default (3). This name will be used as a namespace for the web
service classes generated by Visual Studio based on the WSDL description of the service.

e. Click OK (4) to close the dialog box and add to the project the reference to the specified
service.

Figure: Add Service Reference dialog box

Visual Studio adds to the project the Default service reference in the Connected Services
project folder, as shown in the following screenshot. Double-click the Default service reference
to open the Object Browser and view the list of objects and methods available through the
service.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c620452-c947-4bd6-a9eb-2a8fc04226be

| Working with the Contract-Based SOAP API | 136

Figure: Solution Explorer

3. Modify the app.config file of the project as follows. Cookies are required for the client application
to sign in to Acumatica ERP.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 ...
 <system.serviceModel>
 <bindings>
 <basicHttpBinding>

 <binding name="Acumatica" allowCookies="true"
 maxReceivedMessageSize="6553600">
 </binding>
 </basicHttpBinding>
 </bindings>
 <client>
 <endpoint address=
 "http://localhost/MyStoreInstance/entity/Default/18.200.001"

 binding="basicHttpBinding" bindingConfiguration="Acumatica"
 contract="Default.DefaultSoap" name="DefaultSoap" />
 </client>
 </system.serviceModel>
</configuration>

| Working with the Contract-Based SOAP API | 137

To make API calls to Acumatica ERP through HTTPS, you can use the following
configuration in the app.config file. (Here you use the HTTPS address of the endpoint
instead of the HTTP address, and use the Transport security mode, which indicates that
API calls to Acumatica ERP are made through HTTPS.)

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 ...
 <system.serviceModel>
 <bindings>
 <basicHttpBinding>
 <binding name="Acumatica" allowCookies="true"
 maxReceivedMessageSize="6553600">

 <security mode="Transport" />
 </binding>
 ...
 </basicHttpBinding>
 </bindings>
 <client>
 <endpoint address=

 "https://localhost/MyStoreInstance/entity/Default/18.200.001"
 binding="basicHttpBinding" bindingConfiguration="Acumatica"
 contract="Default.DefaultSoap" name="DefaultSoap" />
 </client>
 </system.serviceModel>
</configuration>

4. Rebuild the project.

You have created a Visual Studio application and added to it the reference to the Acumatica ERP web
service. Now you can start developing your application. For the description of the SOAP API methods,
see Contract-Based SOAP API Reference.

Related Links

• Contract-Based SOAP API Reference

| Working with the Screen-Based SOAP API | 138

Working with the Screen-Based SOAP API
The screen-based SOAP API of Acumatica ERP provides the SOAP interface of the Acumatica ERP
contract-based web services through which external systems can get data records from Acumatica
ERP, process these records, and save new or updated records to Acumatica ERP.

In This Chapter

• Screen-Based Web Services API

• API Objects Related to Acumatica ERP Forms

• Screen-Based API Wrapper

• To Generate the WSDL File of the Web Services

• To Import the WSDL File Into the Development Environment

• To Use the Screen-Based API Wrapper

Screen-Based Web Services API

The screen-based web services API is a part of Acumatica ERP integration services, which provides
integration with external data sources and third-party systems by using a SOAP interface.

External applications and systems that use the Acumatica ERP web services API can access the data
managed by Acumatica ERP and the business functionality of Acumatica ERP. For example, you can
integrate Acumatica ERP with eCommerce or an online store system, so that an external system
pushes all information about customers, sales orders, and payments to Acumatica ERP, and Acumatica
ERP provides information on the availability of stock items and processes all incoming data.

The screen-based web services API works with Acumatica ERP forms. That is, it provides API objects
and methods for working with elements on Acumatica ERP forms.

To upload data to and from Acumatica ERP by using the screen-based web services API, you define
the sequence of commands for the system to work with elements on an Acumatica ERP form. This
sequence of commands reflects the sequence of actions to be executed for a data record as if the
record is being manipulated by a user through an Acumatica ERP form. That is, when you enter data
into the system manually, you perform a sequence of actions. You open the needed data entry form
and start entering data. As you add a new record, you use the UI elements one by one—you type text,
select values from combo boxes, clear or select check boxes, and click buttons. In the sequence of
commands for the web services, you compose exactly the same sequence of actions by specifying a
command for each user action on the form. For more information on the commands you can use, see
Working with Commands of the Screen-Based SOAP API.

This sequence of commands is similar to the sequence of commands you configure when
you create import and export scenarios. You can find more information on import and export
scenarios in Configuring Import Scenarios and Configuring Export Scenarios.

To use screen-based web services API in your application, you should generate the WSDL file of the
web service, as described in To Generate the WSDL File of the Web Services, and import this file to your
development project as described in To Import the WSDL File Into the Development Environment. After that,

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=1d3fb835-20cd-4810-8118-5f40c4fc7f41
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f4da2bb8-dfa9-4d35-83e2-593f52f1c2af

| Working with the Screen-Based SOAP API | 139

you can start developing your application. You can find the description of the API methods in Screen-
Based SOAP API Reference.

You can find examples of use of the API in the I300 Web Services: Basic | Data Retrieval training
course.

Related Links

• API Objects Related to Acumatica ERP Forms

• Screen-Based SOAP API Reference

API Objects Related to Acumatica ERP Forms

The main object, which provides access to all other objects and methods of the Acumatica ERP web
services API, is a Screen object. By using the methods of a Screen object, you can log in to Acumatica
ERP and retrieve, insert, update, and delete data. You can also use the methods to perform any actions
that are exposed by Acumatica ERP forms available through the web service.

Screen Object

After you have logged in to Acumatica ERP by using the web services API, you can access data on
Acumatica ERP forms available through the web service. The Screen class provides the same set of
API methods for working with all Acumatica ERP forms available through the service. You can find out
which form a method accesses by noting the prefix in the name of the method, which is the form ID.
For example, the Export() method that you use to export data from the Stock Items (IN202500) form
is IN202500Export().

Content Object

To get the description of the structure (schema) of a form, you should use the GetSchema() method
of the Screen object. This method is specific for each Acumatica ERP form, and you should use the
method with the ID of the needed form in the prefix of the method name. The method returns the
schema of the form as the corresponding Content object, which is specific for each form. For example,
to get the schema of the Stock Items form, you should call the IN202500GetSchema() method of the
Screen object. You will receive the result as a IN202500Content object, as the following code shows.

Screen context = new Screen();
...
IN202500Content stockItemsSchema = context.IN202500GetSchema();

Command Object

By using subobjects of a Content object, you configure the sequence of commands that should be
executed during data import, data export, or data processing through the web service. You configure
the sequence of commands inside an array of objects of the Command type. When you are reflecting
the selection of an element on a form in the sequence of commands, you have to select the object of
the Acumatica ERP form whose element you want to access. The objects that are available inside a
Content object have names that are similar to the names of the UI elements that you see on the form
and have the ID of the form as a prefix.

For example, to be able to select the Item Class element, which is located in the Item Defaults
group on the General Settings tab of the Stock Items form (shown in the following screenshot),
you would select the GeneralSettingsItemDefaults property of the IN202500Content object. This

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e

| Working with the Screen-Based SOAP API | 140

property provides access to the IN202500GeneralSettingsItemDefaults object, which includes the
ItemClass property.

Each element on an Acumatica ERP form (such as a text box, combo box, or table column) is
associated with a particular web services API class and is available through corresponding property
of this class. The property has a similar name to that of the corresponding box on the form, such as
ItemClass, as the following screenshot shows.

Figure: API object on an Acumatica ERP form

The following code shows an example of configuring a list of commands for the Stock Items form inside
an array of Command objects.

//stockItemsSchema is a IN202500Content object
var commands = new Command[]
{
 stockItemsSchema.StockItemSummary.ServiceCommands.EveryInventoryID,
 stockItemsSchema.StockItemSummary.InventoryID,
 stockItemsSchema.StockItemSummary.Description,
 stockItemsSchema.GeneralSettingsItemDefaults.ItemClass,
 stockItemsSchema.GeneralSettingsUnitOfMeasureBaseUnit.BaseUnit
};

For more information on the commands, see Working with Commands of the Screen-Based SOAP API.

Actions Object

To insert an action to a sequence of commands, such as clicking a button, you use the corresponding
property of the special API object Actions (which has a prefix with the ID of the form in the name).
The Actions object is available through the Actions property of the Content object that corresponds
to the form. The properties of the Actions object have names that are similar to the names of
corresponding buttons on the form, such as Delete.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e

| Working with the Screen-Based SOAP API | 141

You can view the classes available through the web services API by using Object Browser in Visual
Studio.

Related Links

• Working with Commands of the Screen-Based SOAP API

Screen-Based API Wrapper

Because of the connection of the screen-based SOAP API with Acumatica ERP forms, the applications
that are developed based on this API are sensitive to the UI changes in the system. That is, any
changes made to the UI after the application is created require the application to be updated and
recompiled. If you want your application to not depend on the UI changes in the system, you should
use the screen-based API wrapper, which is described in this topic.

How a Client Application Based on the Screen-Based API Works

A client application that uses the screen-based web services API includes the WSDL description of
the service, which contains the API elements that the application can use to work with the service.
The API elements have names that are similar to the names of the elements in the UI of Acumatica
ERP. For example, the Customer ID element of the Customers (AR303000) form corresponds to the
Customer.CustomerSummary.CustomerID property.

When the application calls the Screen.GetSchema() method, it retrieves from Acumatica ERP the
schema of an Acumatica ERP form. The schema of the form is a Content object, which defines the
correspondence between the API elements and the internal data fields that are used for operations
with data by Acumatica ERP. If something has been changed in the schema of an Acumatica ERP
form, the Content object that is returned by the Screen.GetSchema() method contains a different
correspondence between the API elements and internal data fields than the correspondence for which
the application is compiled, and the application fails.

For example, suppose that a client application requests the customer ID by the
Customer.CustomerSummary.CustomerID property. Suppose also that in an update of Acumatica ERP,
the Customer ID element of the Customers form was renamed to Customer, and therefore it should
be requested by using the Customer.CustomerSummary.Customer property from the API. The client
application requests the customer ID by using the Customer.CustomerSummary.CustomerID property
and fails.

What the Screen-Based API Wrapper Is

The screen-based API wrapper is a special wrapper designed to prevent the UI changes in the system
from causing application failure. The wrapper works with any changes in the schema of an Acumatica
ERP form. That is, the wrapper makes the application work regardless of the changes in the names of
UI elements and the changes in the internal names of data fields and objects.

The wrapper is distributed as the PX.Soap.dll file, which is installed automatically during Acumatica
ERP installation. You can find the PX.Soap.dll file in the ScreenBasedAPIWrapper folder of your
Acumatica ERP installation folder.

The PX.Soap library, which the wrapper provides, includes the Helper.GetSchema() method, which
you should use instead of the Screen.GetSchema() method of the screen-based web services API. For
information on how to use the screen-based API wrapper, see To Use the Screen-Based API Wrapper.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=652929bc-9606-4056-aa6e-0c2d1147171b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=652929bc-9606-4056-aa6e-0c2d1147171b

| Working with the Screen-Based SOAP API | 142

How the Screen-Based API Wrapper Works

When the client application is executed for the first time and requests the schema of an Acumatica ERP
form by using the Helper.GetSchema() method, the wrapper requests the schema from the Acumatica
ERP screen-based web service by using the Screen.GetSchema() method of the screen-based API.
The web service interacts with the Acumatica ERP import and export engine and returns the current
schema of the form. The wrapper saves the schema in an XML file and returns the schema to the client
application as a Content object. The client application uses this schema to work with Acumatica ERP.

Instead of the Helper.GetSchema() method you can use the Helper.ReuseStoredSchema()
method to upload a schema that was saved earlier by the wrapper.

The following diagram illustrates the way the screen-based API wrapper works during the first
execution of a client application.

Figure: First execution of an application

When the client application is executed for the second time and all subsequent times and it requests
the schema of an Acumatica ERP form by using the Helper.GetSchema() method, the wrapper
retrieves the XML schema that is saved locally and submits this schema to the Acumatica ERP screen-

| Working with the Screen-Based SOAP API | 143

based web service by using the Screen.SetSchema() method of the screen-based API. The web
service interacts with the Acumatica ERP import and export engine, which replaces the current schema
of the form that is stored on the server with the one that was saved locally. The wrapper returns the
schema that was saved locally to the client application. The client application uses the local schema to
work with Acumatica ERP.

The schema that is submitted to Acumatica ERP by using the screen-based API wrapper is
used on the server during the current session and is discarded after the end of the session.

The following diagram illustrates the way the screen-based API wrapper works during the second
execution and all subsequent executions of a client application.

Figure: Subsequent executions of the application

You should distribute the XML file with the schema along with your client application. If the
wrapper has not found the XML file, it requests the new schema.

The name of the XML file with the schema contains a hash code that depends on the WSDL
description. If you update the WSDL description in your application, the wrapper works in
the same way as it did during the first execution of the application and creates a new XML
file with the schema.

Related Links

• To Use the Screen-Based API Wrapper

| Working with the Screen-Based SOAP API | 144

To Generate the WSDL File of the Web Services

The WSDL description of the Acumatica ERP screen-based web services API contains the descriptions of
the API objects and methods that you can use to access Acumatica ERP forms.

Because of the connection of the API with Acumatica ERP forms, each generated WSDL description
of this API reflects the current state of the system. That is, the WSDL description does not include
any changes made to the system after the WSDL file was generated, and each time you change the
system, you should regenerate the WSDL description and update your application accordingly.

You can prevent breaking changes in your application and omit regeneration of the WSDL
description for each change in the system by using the screen-based API wrapper. For
details on how to use the wrapper, see To Use the Screen-Based API Wrapper.

For example, suppose that you generated a WSDL description of the web service that contains the
definition of the CustomerID property, which corresponds to the Customer ID element on the
Customers (AR303000) form. Further, suppose that you changed the name of the Customer ID
element to Customer Identifier in a customization project. To access the Customer Identifier
element on the form through the screen-based web services API, you need to regenerate the WSDL
description so that it contains the definition of the CustomerIdentifier property that corresponds to
the Customer Identifier element, and update your application accordingly.

You can generate the WSDL file of an Acumatica ERP web service in one of the following ways.

To Generate a WSDL File for One Acumatica ERP Form

If your application needs to work with only one Acumatica ERP form, you can generate the web service
that provides access to only this form.

To generate a WSDL file for a form, on the title bar of this form, click Tools > Web Service in
the UI. This opens the page that contains the description of the web service, with the following
URL: http(s)://<ApplicationPath>/Soap/<FormID>.asmx. In this URL, <ApplicationPath> is
replaced with the actual URL of your application, and <FormID> is replaced with the ID of the form. For
example, suppose that you generated a web service for the Customers form of the WebServiceAPITest
application, which is accessed under a secure connection and is running on a local computer. The URL
of this service is https://localhost/WebServiceAPITest/Soap/AR303000.asmx.

To Generate a WSDL File for Multiple Acumatica ERP Forms

If your application needs to work with multiple Acumatica ERP forms, you can generate one web
service that provides access to all needed forms.

To generate a WSDL file for multiple forms, on the Web Services (SM207040) form, you should do the
following:

1. Type the ID of the web service in the Service ID box of the Summary area of the form. This ID
will be used in the URL of the generated service.

2. Select the Acumatica ERP forms that your application needs to use on the left pane of the form,
and click Add to Grid for each form.

3. Select the types of integration these forms should provide (which can include importing data,
exporting data, and submitting data) by selecting the appropriate check boxes (any combination of
Import, Export, or Submit) for corresponding rows on the right pane of the form.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=652929bc-9606-4056-aa6e-0c2d1147171b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=652929bc-9606-4056-aa6e-0c2d1147171b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=3f64ed4d-c453-42fb-8438-6856119fba90

| Working with the Screen-Based SOAP API | 145

4. Click Generate.

The modules that expose the selected forms should be properly configured and the forms
should open in a web browser. If a form could not be opened in a web browser, the web
service definition will not be generated for this form.

After the web service is generated, you can view the WSDL description by clicking View Generated
on the form toolbar. This opens the page that contains the description of the web service with
the following URL: http(s)://<ApplicationPath>/Soap/<ServiceID>.asmx. In this URL,
<ApplicationPath> is replaced with the actual URL of your application, and <ServiceID> is replaced
with the ID of the service that you specified in the Service ID box when configuring the service. For
example, suppose that you generated a web service for multiple forms with the MYSTORE service ID
for the WebServiceAPITest application, which is accessed under a secure connection and is running
on a local computer. The URL of this service is https://localhost/WebServiceAPITest/Soap/
MYSTORE.asmx.

To Import the WSDL File Into the Development
Environment

When the WSDL file is generated, you must import it into your development environment to generate
proxy classes. If necessary, see the documentation of your development environment to find out the
correct way of building the proxy classes based on the WSDL definition.

The procedure below is described based on an example of the creation of a console project with the
MyBIIntegrationSBAPI name that uses the MYBIINTEGRATION web service. You can create another
type of Visual Studio project with another name and use any other web service define on the Web
Services (SM207040) form in this procedure.

In this topic, you will find instructions on how to implement the proxy classes by using Visual Studio
2019.

Importing the WSDL File into a Visual Studio Project

To import the WSDL description into your development environment, proceed as follows:

1. Open Visual Studio, and create a new Visual C# console application with the MyBIIntegrationSBAPI
name and the .NET Framework 4.8 target framework.

To create a console application, click File > New > Project on the main menu of Visual
Studio. In the Create a new project dialog box, which appears, select the Console App
(.Net Framework) C# template and click Next. In the Configure your new project
dialog box, specify the name and location of the solution, select the .NET Framework 4.8
framework version, and click Create.

The MyBIIntegration application that you have created contains the Program.cs file with the
Program class.

2. Add to the project a reference to the Acumatica ERP web service as follows:

a. On the main menu of Visual Studio, click Project > Add Service Reference.

b. In the Add Service Reference dialog box, which appears, click Advanced.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=3f64ed4d-c453-42fb-8438-6856119fba90
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=3f64ed4d-c453-42fb-8438-6856119fba90

| Working with the Screen-Based SOAP API | 146

c. In the Service Reference Settings dialog box, which appears, click Add Web Reference.

d. In the URL box of the Add Web Reference dialog box, which appears, specify the URL of the
MYBIINTEGRATION web service (see item 1 in the following screenshot).

To copy the URL of the service, on the Web Services (SM207040) form, select
MYBIINTEGRATION in the Service ID box, click Generate and then View
Generated on the form toolbar, and copy the URL from the address line in the
browser for the page that opens. In this example, the URL is http://localhost/
MyStoreInstance/Soap/MYBIINTEGRATION.asmx.

e. Click Go (2) to make Visual Studio connect to the web service.

If your Acumatica ERP website uses a self-signed certificate, Visual Studio displays
security alert windows with warnings on the certificate. Click Yes in these windows
to proceed.

f. In the Web reference name box, type MyBIIntegration (3). This name will be used as
a namespace for the web service classes generated by Visual Studio based on the WSDL
description of the service.

g. Click Add Reference (4) to close the dialog box and add to the project the reference to the
specified service.

Figure: Add Web Reference dialog box

Visual Studio adds to the project the Web References project folder with the MyBIIntegration
web service reference in it, as shown in the following screenshot.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=3f64ed4d-c453-42fb-8438-6856119fba90

| Working with the Screen-Based SOAP API | 147

Figure: Solution Explorer

If you need to update a web reference to the Acumatica ERP web service in a
Visual Studio project, you can update the WSDL description in Acumatica ERP and
update the web reference in the project by right-clicking the web reference in
Solution Explorer and selecting Update Web Reference, as shown in the following
screenshot.

Figure: Update Web Reference menu item

3. Rebuild the project.

| Working with the Screen-Based SOAP API | 148

To Use the Screen-Based API Wrapper

The screen-based SOAP API depends on the user interface of Acumatica ERP forms. That is, each
generated WSDL description of this API includes the API elements that correspond to the current
names of UI elements of the system. Therefore, if any changes have been made to the user interface
of the system after the WSDL file was generated, the WSDL description will not include these changes,
and the client application that uses this WSDL will fail when it works with the system.

To prevent application failures and omit the regeneration of the WSDL description for each change of
the user interface of the system, you can use the screen-based API wrapper, as described in this topic.
You can find more information on the screen-based API wrapper in Screen-Based API Wrapper.

To Use the Screen-Based Web Services API Wrapper in a Client Application

1. Add to your project a reference to PX.Soap.dll.

The PX.Soap.dll file is installed automatically during Acumatica ERP installation.
You can find this file in the ScreenBasedAPIWrapper folder of your Acumatica ERP
installation folder.

2. Use the Helper.GetSchema() method from the PX.Soap library in the code of your application
instead of the corresponding Screen.GetSchema() method to obtain the schema of each form. For
example, the following code retrieves the schema of the Customers (AR303000) form by using the
screen-based API wrapper.

Screen context = new Screen();
context.CookieContainer = new System.Net.CookieContainer();
context.Url = Properties.Settings.Default.MyStoreIntegration_MyStore_Screen;
context.Login
(
 Properties.Settings.Default.Login,
 Properties.Settings.Default.Password
);

AR303000Content custSchema =
 PX.Soap.Helper.GetSchema<AR303000Content>(context);

3. Work with the retrieved Content object by using the standard screen-based web services API
methods.

Related Links

• Screen-Based API Wrapper

• To Update a Client Application that Uses Screen-Based Web Services

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=652929bc-9606-4056-aa6e-0c2d1147171b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ff8e6867-8860-4eb4-a828-06e50bcb71e9

| Working with Commands of the Screen-Based SOAP API | 149

Working with Commands of the Screen-Based
SOAP API

To upload data to and from Acumatica ERP by using the screen-based SOAP API, you should define
the sequence of commands for the system as it works with elements on an Acumatica ERP form. This
sequence of commands reflects the sequence of actions to be executed for a data record as if the
record is being manipulated by a user through an Acumatica ERP form.

In This Chapter

• Commands for Retrieving the Values of Elements

• Selection of a Group of Records for Export

• Commands for Setting the Values of Elements

• Commands for Clicking Buttons on a Form

• Commands for Adding Detail Lines

• Commands for Pop-Up Dialog Boxes and Pop-Up Forms

• Commands for Pop-Up Panels

• Commands for Record Searching: Filter Service Command

• Commands for Record Searching: Key Command

• Commands for Record Searching: Custom Field

• Commands That Require a Commit

• Commands for Working with Attachments

• Commands for Working with Multi-Language Fields

Commands for Retrieving the Values of Elements

You configure the sequence of commands that should be executed during data import, data export, or
data processing through the web service by using an array of objects of the Command type.

As you specify this sequence of commands, when you need to reflect obtaining the value of an element
on a form, you should use a Field object. To specify the element whose value you need to obtain, you
can do one of the following:

• Select the needed Field object from the subobjects of the Field type of a Content object that
corresponds to the needed Acumatica ERP form

• Create an object of the Field type and specify its properties
Both of these ways are described in detail in the following sections of this topic.

| Working with Commands of the Screen-Based SOAP API | 150

Selection of the Fields Available in a Content Object

If you want to obtain the value of an element on an Acumatica ERP form, you can select the needed
Field object from the subobjects of the Field type of the Content object that corresponds to the
form. For example, if you want to export the values of the Inventory ID and Description elements
on the Stock Items (IN202500) form, you can use the following code.

//stockItemsSchema is an IN202500Content object
var commands = new Command[]
{
 ...

 stockItemsSchema.StockItemSummary.InventoryID,
 stockItemsSchema.StockItemSummary.Description,
 ...
};

Field Object Creation

You can retrieve the values of not only the fields that are available on the Acumatica ERP form, but
also the data fields of the data access classes (DACs) underlying the form. Some of these data fields
are not available directly through the elements of the form. That is, you cannot select the needed
Field object among the subobjects of the Content object.

If you want to retrieve the value of an element that is not available on the form, you can create a
Field object and specify its properties so that it specifies the needed data field of the DAC. You should
specify the name of the object that corresponds to the needed DAC as the ObjectName and type the
name of the data field in FieldName. The following code illustrates the creation of a Field object for
the LastModifiedDateTime data field (which specifies the date and time when a record was modified)
that is available through the DAC underlying the StockItemSummary object of the Stock Items form.

To find the names of the data fields that belong to DACs, you should read the applicable
Acumatica ERP code. You can find the source code of Acumatica ERP on the Source Code
(SM204570) form or in <ApplicationFolder>\App_Data\CodeRepository\PX.Objects\, where
<ApplicationFolder> is replaced with the path to the folder of the Acumatica ERP application
instance. You can learn the details of working with the source code of Acumatica ERP in the
T300 Acumatica Customization Platform training course.

//stockItemsSchema is an IN202500Content object
var commands = new Command[]
{
 ...

 new Field
 {
 ObjectName = stockItemsSchema.StockItemSummary.InventoryID.ObjectName,
 FieldName = "LastModifiedDateTime"
 },
 ...
};

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2e58bb02-40c0-47c6-8cea-78607cccc4e1

| Working with Commands of the Screen-Based SOAP API | 151

You can create Field objects for the elements that are available on a form. If you want to
create a Field object for an element available on the form, set the ObjectName property to
the ObjectName property of the needed subobject of the Field type of a Content object,
and set the FieldName property to the FieldName property of this Field object. The
following code illustrates the creation of a Field object for the InventoryID field of the
Stock Items form.

new Field
{
 ObjectName = stockItemsSchema.StockItemSummary.InventoryID.ObjectName,
 FieldName = stockItemsSchema.StockItemSummary.InventoryID.FieldName
}

Selection of a Group of Records for Export

Each record in the system is identified by the values of the key elements on the applicable Acumatica
ERP form. For example, a record on the Stock Items (IN202500) form is identified by the value of the
Inventory ID key element. Key elements are available through the Summary object of a form. You
can use the key element or elements of the form to select all records of the form for export. The other
way to specify a group of records for export is to use the elements of the Summary area of the form in
custom filters. Both ways of selecting records are described in detail below.

Export of All Records from a Form

If you want to export every record from an Acumatica ERP form, in the array of Command objects that
you pass to the Export() method, you should insert the service command of the EveryValue type for
the corresponding key element on the form. The EveryValue service command is available through
the ServiceCommands subobject of the Summary object of the Content object that corresponds to the
form. This service command specifies that every record of the specific type should be processed during
export.

For example, if you want to export all stock item records available in the system, you should insert the
EveryInventoryID service command, as the following code shows.

//stockItemsSchema is an IN202500Content object
var commands = new Command[]
{
 stockItemsSchema.StockItemSummary.ServiceCommands.EveryInventoryID,
 ...
};

Export of a Group of Records from a Form
You can filter the data available in the Acumatica ERP database to select the records for export. For
example, you can configure the system to export only the records that have a particular status.

To define a filter for the data being exported, you should create an array of Filter objects and add the
needed filters to it. To define a filter, you should specify:

• The UI element whose value should be used for filtering (in the Field property of the Filter
object).

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e

| Working with Commands of the Screen-Based SOAP API | 152

• The value or values with which the value of the element should be compared (in the Value
property or Value and Value2 properties of the Filter object).

• The condition of comparison (in the Condition property of the Filter object).
If you define multiple filters in the array, you should also specify the logical operator (either And or Or)
that defines how to apply these filters. If filters are passed to an Export() method, during export, the
system selects only the records that conform to the specified condition (or conditions) and exports only
these records.

For example, suppose that you want to export only the stock item records that have the Active status.
In this case, you can specify the filtering condition that the Item Status element should be equal to
Active, as the following code shows. During export, the system processes the records that match the
filtering conditions and exports only the records with the Active status.

var filters = new Filter[]
{
 new Filter
 {
 Field = stockItemsSchema.StockItemSummary.ItemStatus,
 Condition = FilterCondition.Equals,
 Value = "Active",
 }
};

For filtering records, you can use either the data fields of the Summary object of the form from which
you are exporting data, or the data fields of the data access class (DAC) underlying the Summary
object. (In Acumatica Framework, this DAC is called the main DAC of the primary data view.) If a data
field of the DAC is not available directly through the elements of the Summary object, you cannot
select the needed Field object among the subobjects of a Content object, as the previous code
example shows for the ItemStatus data field. Instead, you should create a new Field object and
specify its properties as follows: Specify the name of the Summary object as ObjectName (that is, the
object name that corresponds to the object to which the key data field belongs), and type the name of
the data field as FieldName in the code directly.

The following example shows filtering by the LastModifiedDateTime data field (which specifies
the date and time when a record was modified) that is available through the DAC underlying the
StockItemSummary object of the Stock Items form.

new Filter
{
 Field = new Field
 {
 ObjectName = stockItemsSchema.StockItemSummary.InventoryID.ObjectName,
 FieldName = "LastModifiedDateTime"
 },
 Condition = FilterCondition.Greater,
 Value = DateTime.Now.AddMonths(-1).ToLongDateString()
}

Commands for Setting the Values of Elements

As you specify the sequence of commands in an array of Command objects, when you need to specify
the value of an element on a form, you should use Value commands.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e

| Working with Commands of the Screen-Based SOAP API | 153

To set the value of an element on a form, you should do the following:

1. Create a Value object.

2. Specify the value of the element on the form in the Value property of the created Value object.

3. Specify the element on the form whose value should be set by using the LinkedCommand property
of the Value object.

The following code illustrates setting the value of the Customer Name element on the Customers
(AR303000) form.

//custSchema is an AR303000Content object
var commands = new Command[]
{
 ...
 new Value
 {
 Value = "John Good",
 LinkedCommand = custSchema.CustomerSummary.CustomerName
 },
 ...
}

Commands for Clicking Buttons on a Form

As you specify the sequence of commands in an array of Command objects, when you need to reflect the
clicking of a button on a form (such as clicking Save, Delete, or Release to perform the action on a
document), you should use the corresponding Action command. Actions are available for all buttons
on the form.

In an array of Command objects, to use an Action command, you have to select the needed action in
the Actions subobject of the Content object that corresponds to the form. Actions have names that
are similar to the names of the buttons on the form.

The following code reflects the clicking of the Save button on the Customers (AR303000) form in a
command.

//custSchema is an AR303000Content object
var commands = new Command[]
{
 ...
 custSchema.Actions.Save,
 ...
};

Commands for Adding Detail Lines

When you need to add a detail line to an Acumatica ERP form, you can use one of the following
approaches:

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=652929bc-9606-4056-aa6e-0c2d1147171b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=652929bc-9606-4056-aa6e-0c2d1147171b

| Working with Commands of the Screen-Based SOAP API | 154

• Add detail lines one by one on the Details tab of the form. For example, on the Sales Orders
(SO301000) form, you can click Add Row on the Document Details tab and specify the values of
the elements of each detail line.

• Add detail lines by using a pop-up panel. For example, on the Shipments (SO302000) form, you can
use the Add Sales Order pop-up panel, which is opened when you click Add Order on the table
toolbar of the Document Details tab.

In this topic, you will find the description of the NewRow command, which imitates the first approach
listed above in the screen-based API. The second approach is described in Commands for Pop-Up Panels.

NewRow Service Command

When you are specifying the sequence of commands in an array of Command objects for a processing
method and you need to add a new detail line to a document, you should use commands as follows:

1. To add a new row, use the NewRow service command, which is an available service command of the
Details subobject of a Content object.

2. To specify the values of the elements of the created row, use the Value commands corresponding
to the elements.

The following code shows an example of an order line being added to a sales order.

//orderSchema is an SO301000Content object
var commands = new Command[]
{
 ...
 orderSchema.DocumentDetails.ServiceCommands.NewRow,
 new Value
 {
 Value = "AALEGO500",
 LinkedCommand = orderSchema.DocumentDetails.InventoryID
 },
 new Value
 {
 Value = "10.0",
 LinkedCommand = orderSchema.DocumentDetails.Quantity
 },
 new Value
 {
 Value = firstItemUOM,
 LinkedCommand = orderSchema.DocumentDetails.UOM
 },
 ...
}

Commands for Pop-Up Dialog Boxes and Pop-Up Forms

In this topic, you will learn how to enter data to pop-up dialog boxes and pop-up forms by using the
screen-based SOAP API.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f47cffcc-543e-469c-a204-a9c1e3da346d

| Working with Commands of the Screen-Based SOAP API | 155

Pop-Up Dialog Boxes

When you update specific fields on some forms under certain circumstances, the system displays pop-
up dialog boxes where you need to respond to a question (by clicking a button) in order to proceed.
For example, when you update the Customer Class value on the Customers (AR303000) form for an
existing customer, the system displays a Warning dialog box with the text Please confirm if you want
to update current customer settings with the customer class defaults. Otherwise, original settings
will be preserved. and the Yes and No buttons. You should click Yes to proceed with changing the
customer class.

When you are specifying the sequence of commands in an array of Command objects for a processing
method and you need to specify an answer to a question that would appear in a pop-up dialog box if
the data was being entered manually, you should create a Value command and set its properties as
follows:

• In the Value property, specify the answer that you select in the dialog box during manual entry of
a record.

• In the LinkedCommand property, use a DialogAnswer service command, which is available through
the ServiceCommands subobject of an object that invokes the appearance of the pop-up dialog box.

You should insert this Value command directly before the field that causes the appearance of the
dialog box.

The following code shows how you would update the customer class in an existing customer record on
the Customers form.

//custSchema is an AR303000Content object
var commands = new Command[]
{
 ...
 new Value
 {
 Value = "Yes",
 LinkedCommand = custSchema.CustomerSummary.ServiceCommands.DialogAnswer
 },
 new Value
 {
 Value = "INTL",
 LinkedCommand = custSchema.GeneralInfoFinancialSettings.CustomerClass
 },
 ...
};

Pop-Up Forms

When you click specific buttons on some forms, the system opens a pop-up window with another
Acumatica ERP form where you can specify or edit the values of elements as needed. For example, if
you click Add Contact on the Contacts tab of the Customers form, the system displays the Contacts
(CR302000) form.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=652929bc-9606-4056-aa6e-0c2d1147171b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=652929bc-9606-4056-aa6e-0c2d1147171b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=652929bc-9606-4056-aa6e-0c2d1147171b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=75a5dea9-d640-4b71-95b1-88534c4afad7

| Working with Commands of the Screen-Based SOAP API | 156

Do not confuse a situation when the system opens a pop-up window that contains an
Acumatica ERP form with a situation when the system opens a pop-up panel (where you
can specify needed settings but no Acumatica ERP form is shown). A pop-up window that
contains a form has an address line in the browser where you can see the ID of the form. A
pop-up panel looks like a dialog box and does not have an address line.

When you are specifying a sequence of commands in an array of Command objects for a processing
method and you need to reflect the setting of values of elements of a pop-up form in these commands,
you should perform the following steps:

1. Call an action that invokes a pop-up form as follows:

a. By using the GetSchema() method of the PX.Soap.Helper class, get the Content object that
corresponds to the form that invokes a pop-up form.

b. Specify the command that invokes a pop-up form in the sequence of commands by using the
corresponding Action command.

c. Submit this sequence of commands to the form that invokes the pop-up form by using the
corresponding Submit() method.

2. Specify the values on the pop-up form as follows:

a. By using the GetSchema() method of the PX.Soap.Helper class, get the Content object that
corresponds to the form that appears as a pop-up.

b. Specify the list of commands that specifies the values of needed elements of the pop-up form.

c. Add the Save action to the list of commands.

d. Submit this sequence of commands to the pop-up form by using the corresponding Submit()
method.

The following code illustrates the setting of the values of the Contacts form, which appears as a pop-up
after the user clicks Add Contact on the Contacts tab of the Customers form.

//context is a Screen object
//custSchema is an AR303000Content object
var commands = new Command[]
{
 new Value
 {
 Value = customerID,
 LinkedCommand = custSchema.CustomerSummary.CustomerID
 },

 custSchema.Actions.NewContact
};
context.AR303000Submit(commands);

//contSchema is a CR302000Content object
commands = new Command[]
{
 new Value
 {

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=75a5dea9-d640-4b71-95b1-88534c4afad7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=652929bc-9606-4056-aa6e-0c2d1147171b

| Working with Commands of the Screen-Based SOAP API | 157

 Value = "Green",
 LinkedCommand = contSchema.DetailsSummary.LastName
 },
 contSchema.Actions.Save,
};
context.CR302000Submit(commands);

Commands for Pop-Up Panels

In some instances, when you click a specific button on some form, the system opens a pop-up panel,
where you can set the values of needed elements. This pop-up panel looks like a dialog box and does
not contain an Acumatica ERP form. For example, if you click Add Order on the table toolbar of the
Document Details tab of the Shipments (SO302000) form, the system displays the Add Sales Order
pop-up panel.

Do not confuse a situation when the system opens a pop-up panel (where you can set
needed settings but no Acumatica ERP form is shown) with a situation when the system
opens a pop-up window that contains an Acumatica ERP form. A pop-up window that
contains a form has an address line in the browser where you can see the ID of the form. A
pop-up panel looks like a dialog box and does not have an address line.

When you are specifying a sequence of commands in an array of Command objects for a processing
method and you need to reflect the setting of values of elements on a pop-up panel in these
commands, you should perform the following steps:

1. Insert the DialogAnswer service command of the pop-up panel object before the action that opens
the panel, and set the Commit property to true for this command.

2. Specify the action that opens the pop-up panel, and set the Commit property of the action to true.

3. Specify the values of elements as needed on the pop-up panel.

4. Specify the action that closes the panel, and set the Commit property of the action to true.

For some pop-up panels, you need to specify only one action to select values from the
pop-up panel. For example, you need to specify only one action if you are creating a
shipment by using the Create Shipment action on the Sales Orders (SO301000) form,
which displays the Specify Shipment Parameters pop-up panel.

The following code illustrates the setting of the values on the Add Sales Order pop-up panel, which
appears after a user clicks Add Order on the toolbar of the Document Details tab of the Shipments
form.

//shipmentSchema is a SO302000Content object
//Force a commit for the SelectSO action
var selectSOwithCommit = shipmentSchema.Actions.SelectSO;
selectSOwithCommit.Commit = true;

//Force a commit for the AddSO action
var addSOwithCommit = shipmentSchema.Actions.AddSO;
addSOwithCommit.Commit = true;

//Configure the list of commands

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f47cffcc-543e-469c-a204-a9c1e3da346d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f47cffcc-543e-469c-a204-a9c1e3da346d

| Working with Commands of the Screen-Based SOAP API | 158

var commands = new Command[]
{
 ...
 //Open the Add Sales Order panel
 new Value
 {
 Value = "OK",
 LinkedCommand =
 shipmentSchema.AddSalesOrderOperation.ServiceCommands.DialogAnswer,
 Commit = true
 },
 selectSOwithCommit,

 //Specify the first order number on the Add Sales Order panel
 //and get the values of item elements
 new Value
 {
 Value = firstOrderNbr,
 LinkedCommand = shipmentSchema.AddSalesOrderOperation.OrderNbr
 },
 new Value
 {
 Value = "True",
 LinkedCommand = shipmentSchema.AddSalesOrder.Selected
 },
 shipmentSchema.AddSalesOrder.InventoryID,
 shipmentSchema.AddSalesOrder.Quantity,
 shipmentSchema.AddSalesOrder.OpenQty,
 shipmentSchema.AddSalesOrder.LineDescription,
};
//context is a Screen object
//Submit the commands to the form
var soLines = context.SO302000Submit(commands);

//Select all items of the first order for shipment
List<Command> commandList = new List<Command>();
for (int index = 0; index < soLines.Length; index++)
{
 commandList.Add(new Value
 {
 Value = index.ToString(),
 LinkedCommand = shipmentSchema.AddSalesOrder.ServiceCommands.RowNumber
 });
 commandList.Add(new Value
 {
 Value = "True",
 LinkedCommand = shipmentSchema.AddSalesOrder.Selected,
 Commit = index < soLines.Length - 1
 });
}

//Add items to the shipment
commandList.Add(addSOwithCommit);
context.SO302000Submit(commandList.ToArray());

| Working with Commands of the Screen-Based SOAP API | 159

Commands for Record Searching: Filter Service
Command

The system uses the key element or elements on a form to find records that belong to different
documents. For example, on the Invoices and Memos (AR301000) form, there are two key elements:
Type and Reference Nbr.

If you know the values of the key element or elements of the needed record, you can select this record
for update by specifying the key values in the sequence of commands that you pass to the processing
method of the web services API. In the sequence of commands, you should first specify key element or
elements to identify the record that you are going to update. After you have specified the values of key
element or elements, you should specify the values of other elements in the order in which you would
specify them on the form.

If you do not know the values of the key element or elements of the needed record, you can update
records in the system by searching for them using their unique field values that you know. For
example, you can identify customers by email addresses or phone numbers. To search for a record,
you have to imitate the use of a column of a Select dialog box, declare a custom key, or declare a
custom field in the sequence of commands that you pass to a processing method. In this topic, you
will find a detailed description of the Filter service command, which imitates the use of a selector
column. You can find a description of two other approaches in Commands for Record Searching: Key
Command and Commands for Record Searching: Custom Field.

Filter Service Command

Selector columns on an Acumatica ERP form appear when a user clicks the Magnifier icon of the key
element of the form to bring up the Select dialog box. Service commands for selector columns have
the Filter prefix in their names. For example, to search for a customer record, you can use the
FilterCity, FilterCountry, FilterEmail, and FilterPhone1 service commands.

To use a column of a Select dialog box for a search, you have to do the following:

1. Create a Field object, and initialize its properties with the values of the properties of the key field.

2. Concatenate the FieldName property of this object (which is now equal to the value of the
FieldName property of the key field) with ! and the FieldName property of the needed Filter
service command.

3. In the Value command in the array of Command objects, set the Value property to the value that
should be used for the search and the LinkedCommand property to the created Field object.

For example, the following code searches for a customer record by email address.

//custSchema is an AR303000Content object
Field customerIDSelector = custSchema.CustomerSummary.CustomerID;
customerIDSelector.FieldName += "!" +
 custSchema.CustomerSummary.ServiceCommands.FilterEmail.FieldName;

var commands = new Command[]
{
 new Value
 {
 Value = "demo@gmail.com",

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5e6f3b27-b7af-412f-a40a-1d4f4be70cba

| Working with Commands of the Screen-Based SOAP API | 160

 LinkedCommand = customerIDSelector
 },
 ...
};

| Working with Commands of the Screen-Based SOAP API | 161

If you need to get the value of the field that was used for a search as a result of the
processing, you should assign an initial FieldName to the field before getting the value. For
example, the following code shows how to get the value of the Customer ID element after
you have modified the corresponding field for the search.

//custSchema is an AR303000Content object
//Save the initial field name of the CustomerID field
string initialCustomerIDFieldName =
custSchema.CustomerSummary.CustomerID.FieldName;

//Configure the command that searches for a customer record
//by using the FilterEmail service command
Field customerIDSelector = custSchema.CustomerSummary.CustomerID;
customerIDSelector.FieldName += "!" +
custSchema.CustomerSummary.ServiceCommands.FilterEmail.FieldName;

//Configure the list of commands
var commands = new Command[]
{
 //Search for the needed customer record
 new Value
 {
 Value = customerMainContactEmail,
 LinkedCommand = customerIDSelector
 },

 //Do the needed modifications and save changes on the form
 ...
};

//context is a Screen object
//Submit commands to the form
context.AR303000Submit(commands);

//Assign an initial field name to the CustomerID field
custSchema.CustomerSummary.CustomerID.FieldName = initialCustomerIDFieldName;

//Get the customer ID
commands = new Command[]
{
 custSchema.CustomerSummary.CustomerID
};

//Submit commands to the form
AR303000Content customer = context.AR303000Submit(commands)[0];

Commands for Record Searching: Key Command

To search for a record, you have to imitate the use of a column of a Select dialog box, declare a
custom key, or declare a custom field in the sequence of commands that you pass to a processing
method. In this topic, you will find a detailed description of the use of the Key command, which you

| Working with Commands of the Screen-Based SOAP API | 162

use to declare a custom key. You can find descriptions of two other approaches in Commands for Record
Searching: Filter Service Command and Commands for Record Searching: Custom Field.

Key Command

If you specify the value of key elements on an Acumatica ERP form, the system does not change the
current record in the system; instead, it searches for the record, which is identified by the values of
the key elements, and selects this record. By using custom keys, you can make some elements on an
Acumatica ERP form work as key elements.

You can specify custom keys to search for a record or a detail line. You can use the fields of the
summary object and the detail objects, but not the fields that belong to other objects, as custom key
fields. For example, you can find the needed customer record in the system by using the CustomerName
field of the AR303000CustomerSummary object of the Customers (AR303000) form as the custom key,
but you cannot find the record by using the Email field of the AR303000GeneralInfoMainContact
object as the custom key.

To specify a custom key, you have to define the key by using the Key command as follows:

1. Create a Key command by using the operator new.

2. To specify the element that should be used as a custom key, set the ObjectName and FieldName
properties of the created Key command to the values of the ObjectName and FieldName properties
of the field corresponding to the element.

3. To specify the value of the custom key, set the Value property of the created Key command to
the needed value in the format ='<Key value>', where you should replace <Key value> with the
needed value of the key.

Below is an example of the Key command that declares the Warehouse column as the custom key on
the Document Details tab of the Sales Orders (SO301000) form.

new Key
{
 ObjectName = orderSchema.DocumentDetails.Warehouse.ObjectName,
 FieldName = orderSchema.DocumentDetails.Warehouse.FieldName,
 Value = "='MAIN'"
},

Commands for Record Searching: Custom Field

To search for a record, you have to imitate the use of a column of a Select dialog box, declare a
custom key, or declare a custom field in the sequence of commands that you pass to a processing
method. In this topic, you will find a detailed description of the declaration of a custom field. You can
find descriptions of two other approaches in Commands for Record Searching: Filter Service Command and
Commands for Record Searching: Key Command.

Custom Field

Acumatica ERP does not include Filter service commands for all selector columns that are available
on Acumatica ERP forms. To use the needed selector column for record searching, you can create a
custom field as follows:

1. Initialize the properties of a Field object with the values of the properties of the key field.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=652929bc-9606-4056-aa6e-0c2d1147171b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5

| Working with Commands of the Screen-Based SOAP API | 163

2. Concatenate the FieldName property of this object (which is now equal to the value of the
FieldName property of the key field) with ! and the internal name of the selector column that you
are going to use for the search. The internal name of the selector column is equal to the value of
the FieldName property of the corresponding element on the form.

3. In the Value command in the array of Command objects, set the Value property to the value that
should be used for the search and the LinkedCommand property to the created Field object.

For example, the following code searches for a sales order by order number.

//orderSchema is an SO301000Content object
var searchCustomerOrder = orderSchema.OrderSummary.OrderNbr;
searchCustomerOrder.FieldName +=
 "!" + orderSchema.OrderSummary.CustomerOrder.FieldName;

var commands = new Command[]
{
 new Value
 {
 Value = "SO",
 LinkedCommand = orderSchema.OrderSummary.OrderType
 },
 new Value
 {
 Value = "SO248-563-06",
 LinkedCommand = searchCustomerOrder
 },
 ...
}

Commands That Require a Commit

There are two types of elements on an Acumatica ERP form: elements with a commit, and elements
without a commit. A commit is an action initiated by the form that, when triggered, sends the data to
the server. On the server, the commit causes all data on the form to be updated, including the insertion
of default values and the recalculation of the values of elements on the form.

A commit is a costly operation that causes the browser to make requests to the server and takes
server time. As such, a commit is invoked for only a limited number of elements: mainly the key
elements and the elements the other elements depend on.

In a Visual Studio project, if you specify the value of an element for which the system performs a
commit by using a Value command, the Commit property of the LinkedCommand property (which
specifies this element) is automatically set to true. You can check the value of the Commit property
when you are debugging an application if you insert a breakpoint in the code after an array of
commands has been configured. In the following screenshot, you can see that for the command that
sets the value of the Customer ID element on the Customers (AR303000) form, the Commit property
of the LinkedCommand is set to true. (The Customer ID element has the internal field name AcctCD.)

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=652929bc-9606-4056-aa6e-0c2d1147171b

| Working with Commands of the Screen-Based SOAP API | 164

Figure: Commit property

If the Commit property is false, the element is filled in with data but no update of the form is invoked.
If the Commit property is true, after the element is filled in, the commit is invoked on the server and
the form is updated.

For example, when you select a customer class on the Customers form, the system assigns values to
the elements related to customer class settings, such as Statement Cycle ID and Country. When
you configure a sequence of commands for setting the values of elements on the Customers form, for
elements such as Customer, the system automatically sets the Commit property of LinkedCommand to
true.

In most cases, when you compose the sequence of commands, you can use the values of the Commit
property that are set by default. However, you may need to force the system to invoke a commit to
the server—for example, when you need to commit the value of the field before entering another field
value. In such cases, you should set the Commit property to true for the command or action.

Commands for Working with Attachments

In Acumatica ERP, you can attach files to records on Acumatica ERP forms and to detail lines on
master-detail forms.

To obtain a file attached to the selected record or detail line through the web services API, you specify
the Value command in the array of Command objects as follows:

• In the FieldName property, you specify the name of the file that should be obtained.

• In the LinkedCommand property, you specify the needed Attachment service command.

To work with a file attached to a form, you use the Attachment service command of the object
that corresponds to the Summary object. For example, to obtain a file attached to a stock item

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=652929bc-9606-4056-aa6e-0c2d1147171b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=652929bc-9606-4056-aa6e-0c2d1147171b

| Working with Commands of the Screen-Based SOAP API | 165

record on the Stock Items (IN202500) form, you use the Attachment service command of the
IN202500StockItemSummary object.

To work with the file attached to a detail line of a master-detail form, you use the Attachment
service command of the object that corresponds to the Details object. For example, to obtain
the file attached to a warehouse detail line of a stock item on the Stock Items form, you use the
Attachment service command of the IN202500WarehouseDetails object.

The following code shows how to retrieve the file attached to a stock item record on the Stock Items
form.

//stockItemsSchema is an IN202500Content object
var commands = new Command[]
{
 new Value
 {
 Value = "AAMACHINE1",
 LinkedCommand = stockItemSchema.StockItemSummary.InventoryID
 },
 new Value
 {
 FieldName = "T2MCRO.jpg",
 LinkedCommand =
 stockItemSchema.StockItemSummary.ServiceCommands.Attachment
 }
};
//context is a Screen object
var stockItemAttachment =
 context.IN202500Export(commands, null, 1, false, true);

Commands for Working with Multi-Language Fields

For some text boxes on Acumatica ERP forms, users can type values in multiple languages if multiple
locales are configured in Acumatica ERP. For example, if your Acumatica ERP instance has English
and French locales activated and multilingual user input configured, you can specify the value of the
Description box on the Stock Items (IN202500) form in English and French. For the list of elements
that support multiple languages, see Boxes that Have Multi-Language Support. For details on how to turn
on multilingual user input, see Enabling Multilingual User Input.

Specifying Localized Values of a Multi-Language Field

When you need to specify localized values of a text box by using the screen-based SOAP API, you
specify the value of the field that corresponds to the box as a string in JSON format with the localized
values. In this string, you use the two-letter ISO code of the language with which the value should be
associated.

In the example that is mentioned at the beginning of the topic, if you need to specify values in English
and French in the Description box on the Stock Items form, you specify the value of the Description
field of the StockItem entity in the following format: [{en:English description},{fr:French
description}], as shown in the following code fragment.

//stockItemSchema is an IN202500Content object
new Value
{

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=837d92c1-eeba-4023-8f83-23a7023a48c7
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b43ca9dd-782a-4fdc-b9c3-f3e9ddd2d8ac
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e

| Working with Commands of the Screen-Based SOAP API | 166

 Value = "[{en:Item},{fr:Pièce}]",
 LinkedCommand = stockItemSchema.StockItemSummary.Description
}

In the JSON-formatted string, you should specify the actual values of the field in all
languages that are configured for multilingual user input. If you specify the values of
the field in particular languages, the values of the field in other languages configured
for multilingual user input become empty. For example, suppose that in your instance of
Acumatica ERP, multi-language fields can have values in English and French. If you pass the
value of a field in the following format [{en:English description}], the French value of
the field becomes empty.

If you specify the value of a multi-language field as plain text, this text is saved as the value of the
corresponding box in the current language of Acumatica ERP (that is, either the default language of the
instance or the language that you have specified by using the SetLocaleName() method). For details
on how to specify the locale through the screen-based SOAP API, see SetLocaleName() Method.

Retrieving Localized Values of a Multi-Language Field

If you need to retrieve localized values of a text box that supports multiple input languages, you
retrieve the value of an internal field that contains all localized values of the text box and has the
Translations suffix in its field name.

To specify the field name and the object name of the needed internal field with localized values, you
specify the field name and the object name of the multi-language text box and append Translations to
the field name. For example, the following code shows the command that you should use to retrieve
the localized values of the Description element of the Stock Items form.

//stockItemSchema is an IN202500Content object
new Field
{
 ObjectName = stockItemsSchema.StockItemSummary.Description.ObjectName,
 FieldName = stockItemsSchema.StockItemSummary.Description.FieldName +
 "Translations"
}

The returned value of a Translations field is a string in JSON format with the available localized
values of the field. The language to which the value belongs is identified by the two-letter ISO code
of the language. For example, suppose that the Description element of the Stock Items form has the
value Item in English and Pièce in French. In this case, the value of the DescrTranslations field,
which corresponds to the Description element, is the following string: [{en:Item},{fr:Pièce}].

Related Links

• Locales and Languages

• Boxes that Have Multi-Language Support

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b43ca9dd-782a-4fdc-b9c3-f3e9ddd2d8ac
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=837d92c1-eeba-4023-8f83-23a7023a48c7

| Configuring Push Notifications | 167

Configuring Push Notifications
Acumatica ERP provides push notifications that make it possible for the external applications to
track the changes in the data in Acumatica ERP. That is, you can configure Acumatica ERP to send
notifications to a destination (such as an HTTP address) when specific data changes in Acumatica
ERP. The external application can receive these notifications and process the information on the data
changes, if necessary. With push notifications, the external application doesn't need to continually
poll for the data to find out whether there are any changes in this data, which helps improve the
performance of the external application.

In this chapter, you can find information on how to configure Acumatica ERP to send push notifications.

In This Chapter

• Push Notifications

• Recommendations for the Data Queries

• Push Notification Destinations

• Push Notification Format

• To Configure Push Notifications

• To Process Failed Notifications

Push Notifications

Push notifications are notifications in JSON format that are sent by Acumatica ERP to notification
destinations when specific data changes occur in Acumatica ERP. External applications can receive the
notifications and process them to retrieve the information about the changes.

If you have installed a new version of Acumatica ERP or updated your Acumatica ERP
instance by using the Acumatica ERP Configuration Wizard, push notifications are enabled in
Acumatica ERP automatically.

If you have updated your Acumatica ERP instance through the web interface, you need
to manually enable push notifications in Acumatica ERP, as described in To Enable Push
Notifications Manually in the Installation Guide.

If you need to enable push notifications on the Acumatica ERP instances in a cluster, you
should follow the instructions in To Enable Push Notifications in a Cluster in the Installation
Guide.

To work with Acumatica ERP push notifications, you need to configure the following items:

• The data query that defines the data changes for which Acumatica ERP should send notifications

• The destination to which Acumatica ERP should send notifications

• The way the external application processes the notifications

• The definition of the push notification in Acumatica ERP, which specifies the data query and the
notification destination

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f7b537e9-b3c4-4bb9-82cb-546dd24a6c76
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f7b537e9-b3c4-4bb9-82cb-546dd24a6c76
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f7b537e9-b3c4-4bb9-82cb-546dd24a6c76

| Configuring Push Notifications | 168

The following diagram illustrates the sending of a push notification. In the diagram, rectangles with a
red border indicate the items that you need to configure to receive push notifications when changes
occur.

Figure: Sending a push notification

Data Query

The data query can be defined by either a generic inquiry or a built-in definition (which is a data query
defined in code). For details on generic inquiries, see Managing Generic Inquiries. For information on how
to create a built-in definition, see To Create a Built-In Definition. You can define multiple queries for one
notification destination.

The data query should adhere to the recommendations described in Recommendations for the Data
Queries.

Notification Destination

The following predefined notification destinations are provided: webhook (HTTP address), message
queue, or SignalR hub. For more information on the predefined notification destinations, see Push
Notification Destinations. You can also create your own destination type, as described in To Create a Custom
Destination Type.

Processing of the Notifications in the External Application

The external application can process the notifications and extract the information about the data
changes. Acumatica ERP sends notifications to notification destinations in JSON format. For details on
the format of the notifications, see Push Notification Format. If your application watches notifications in
the SignalR hub, you need to connect to the hub, as described in To Connect to the SignalR Hub.

Definition of the Push Notification

In the definition of the push notification on the Push Notifications (SM302000) form, you specify the
notification destination and the data queries for which the notifications should be sent. For details on
the setup of the push notifications, see To Configure Push Notifications.

Related Links

• To Configure Push Notifications

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5737bca9-aebb-446d-9e1a-bc5fcfad6797
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ba35054f-3485-415e-9785-da1195cb708b

| Configuring Push Notifications | 169

Recommendations for the Data Queries

For optimal results, follow these recommendations when you create each data query for which you
want to configure push notifications:

• Do not use aggregation and grouping in the query; Acumatica ERP does not guarantee that push
notifications will work correctly with such queries.

• Do not use joins of multiple detail tables in the query because this may cause the system to hang.

• If you need to join multiple tables, use a left join or an inner join in the data query. If you use an
inner join, the query execution may be slower than for a left join.

• Use as simple a data query as possible.

• For a query defined by using a generic inquiry, do not use a formula on the Results Grid tab of
the Generic Inquiry (SM208000) form.

Related Links

• To Configure Push Notifications

Push Notification Destinations

When you configure a push notification on the Push Notifications (SM302000) form of Acumatica
ERP, you select the type of the notification destinations, which can be any of the predefined types
described in this topic. You can also create your own destination type, as described in To Create a
Custom Destination Type in the Acumatica Framework Developer Guide.

Webhook

A webhook is an HTTP address to which Acumatica ERP sends HTTP POST requests with notification
information. For this destination type, you specify a valid HTTP address (such as http://
localhost:80/main.aspx?pushqueue) in the Address box on the Push Notifications (SM302000) form.
For security reasons, you can specify a header of the HTTP request in the Header Name and Header
Value boxes.

Do not specify the Accept and Content-Type headers for the request. The values of these
headers are specified automatically by the system.

If Acumatica ERP cannot send notifications to the HTTP address, Acumatica ERP logs information on the
failed notifications and displays these notifications on the Process Push Notifications (SM502000) form.
You can resend the failed notifications for two days, after which the notifications are removed from the
Acumatica ERP database. For details on how to resend notifications, see To Process Failed Notifications.

Message Queue

The message queue is a local or remote private Microsoft message queue. You specify the address of
the message queue (such as MyComputer\private$\TestQueueForPushNotificatons) in the Address
box on the Push Notifications (SM302000) form. For information on how to configure a private Microsoft
message queue, see the Microsoft documentation.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5388c653-eac4-4f43-b769-163cd037ab09
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ba35054f-3485-415e-9785-da1195cb708b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ba35054f-3485-415e-9785-da1195cb708b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=bb6d830e-80b8-45fd-9efe-cc20c158c702
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ba35054f-3485-415e-9785-da1195cb708b

| Configuring Push Notifications | 170

The message queue is the most reliable destination type protected from network failures. However,
if Acumatica ERP cannot send notifications to the message queue for some reason, Acumatica ERP
logs information about the failed notifications and displays these notifications on the Process Push
Notifications (SM502000) form. You can resend the failed notifications for two days, after which the
notifications are removed from the Acumatica ERP database. For information on how to resend
notifications, see To Process Failed Notifications.

SignalR Hub

The SignalR hub is the destination type implemented in Acumatica ERP by using the ASP.NET SignalR
library. The address of this destination type is PushNotificationsHub, which is filled in automatically
in the Address box on the Push Notifications form. This destination type can be used if you can expose
neither an HTTP address (webhook) nor a message queue to receive push notifications. If Acumatica
ERP is configured to send notifications to the SignalR hub, the external application can connect to
Acumatica ERP through websoket or a long-polling mechanism and receive notifications through
this connection. If multiple external applications are connected to the SignalR hub, they receive
notifications simultaneously. For information on how to connect your application to the SignalR hub of
Acumatica ERP, see To Connect to the SignalR Hub in the Acumatica Framework Developer Guide.

The SignalR hub destination type is not reliable: If the connection fails or there are no clients
connected to the SignalR hub when a notification comes, this notification will not be sent and it cannot
be resent later.

Push Notification Format

Acumatica ERP sends push notifications in JSON format. This topic describes the structure of the
notifications.

Elements

The push notifications that Acumatica ERP sends include the following elements in JSON format.

Element Description

Inserted The rows that are new in the results of the query execution.

Deleted The rows that were in the results of the query execution but are missing after
the latest data transaction. You can compare the Inserted and Deleted rows to
identify the rows that have been updated.

Query The query for which Acumatica ERP has produced the notification. The value of
the element can be either the name of the generic inquiry or the name of the
class with the built-in definition.

CompanyId The name of the company.

Id The unique identifier of the data transaction in Acumatica ERP that has initiated
the notification. The external application can use this identifier to omit duplicat-
ed notifications.

TimeStamp The long value that corresponds to the date and time when the transaction that
initiated the notification happened in Acumatica ERP. By using the value of this
element, the external application can define the order of notifications.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=bb6d830e-80b8-45fd-9efe-cc20c158c702
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=bb6d830e-80b8-45fd-9efe-cc20c158c702
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ba35054f-3485-415e-9785-da1195cb708b

| Configuring Push Notifications | 171

Element Description

AdditionalInfo Any additional information that is added to the notification. This element can
contain additional information added by the system as well as the custom infor-
mation. For more information on how to add custom additional information to
push notifications, see To Add Additional Information to Push Notifications.

Example

Suppose that push notifications are configured for the Stock Items: Last Modified
Date generic inquiry (which displays the InventoryID, StockItem, ItemStatus, and
InventoryItem_lastModifiedDateTime columns). Acumatica ERP sends the following notification
when the status of the AACOMPUT01 inventory item has been changed from Active to Inactive.

{
 "Inserted":
 [{
 "InventoryID":"AACOMPUT01",
 "StockItem":true,
 "ItemStatus":"Inactive",
 "InventoryItem_lastModifiedDateTime":"2017-05-05T15:16:23.1"
 }],
 "Deleted":
 [{
 "InventoryID":"AACOMPUT01",
 "StockItem":true,
 "ItemStatus":"Active",
 "InventoryItem_lastModifiedDateTime":"2017-05-05T15:16:23.103"
 }],
 "Query":"Stock Items: Last Modified Date",
 "CompanyId":"Company",
 "Id":"1af4d140-5321-41f2-a2ec-50b67f577c6c",
 "TimeStamp":636295833829493672,
 "AdditionalInfo":{}
}

To Configure Push Notifications

To configure push notifications, you use the Push Notifications (SM302000) form.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ba35054f-3485-415e-9785-da1195cb708b

| Configuring Push Notifications | 172

Before You Proceed

If you have installed a new version of Acumatica ERP or updated your Acumatica ERP
instance by using the Acumatica ERP Configuration Wizard, push notifications are enabled in
Acumatica ERP automatically.

If you have updated your Acumatica ERP instance through the web interface, you need
to manually enable push notifications in Acumatica ERP, as described in To Enable Push
Notifications Manually in the Installation Guide.

If you need to enable push notifications on the Acumatica ERP instances in a cluster, you
should follow the instructions in To Enable Push Notifications in a Cluster in the Installation
Guide.

You need to define the data query or data queries for which Acumatica ERP should send notifications
on data changes. Each data query can be defined by either a generic inquiry or a built-in definition. For
details on generic inquiries, see Managing Generic Inquiries. For information on how to create a built-in
definition, see To Create a Built-In Definition in the Acumatica Framework Development Guide. For details
on defining the data queries, see Recommendations for the Data Queries.

You should also identify the notification destination that your external application will scan, which
can be one of the following: webhook (HTTP address), message queue, or SignalR hub. For more
information on the notification destinations, see Push Notification Destinations. You should configure your
external application so that it can process notifications sent to the destination.

To Send Notifications to an HTTP Address

1. On the System tab, click Integration. In the navigation pane, navigate to Configure > Push
Notifications (SM302000).

2. In the Destination Name box, type the name of the target notification destination, which can be
the name of your external application.

3. In the Destination Type box, select Webhook.

4. In the Address box, type the HTTP address to which Acumatica ERP should send the push
notifications, such as http://localhost:80/main.aspx?pushqueue.

5. Optional: In the Header Name and Header Value boxes, specify the header of the HTTP POST
request in which Acumatica ERP sends the notification.

Do not specify the Accept and Content-Type headers for the request. The values of
these headers are specified automatically by the system.

6. For each generic inquiry for which you want Acumatica ERP to send notifications on changes in the
inquiry results, do the following:

a. On the table toolbar of the Generic Inquiries tab, click Add Row. The new row has the
Active check box selected.

b. In the Inquiry Title column of the added row, select the generic inquiry for which you want
Acumatica ERP to send notifications.

7. For each built-in definition for which you want Acumatica ERP to send notifications on changes in
the results, do the following:

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f7b537e9-b3c4-4bb9-82cb-546dd24a6c76
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f7b537e9-b3c4-4bb9-82cb-546dd24a6c76
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f7b537e9-b3c4-4bb9-82cb-546dd24a6c76
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5737bca9-aebb-446d-9e1a-bc5fcfad6797

| Configuring Push Notifications | 173

a. On the table toolbar of the Built-In Definitions tab, click Add Row. The new row has the
Active check box selected.

b. In the Class Name column of the added row, select the class that defines the data query for
which you want Acumatica ERP to send notifications.

8. On the form toolbar, click Save.

To Send Notifications to a Message Queue

1. On the System tab, click Integration. In the navigation pane, navigate to Configure > Push
Notifications (SM302000).

2. In the Destination Name box, type the name of the target notification destination, which can be
the name of your external application.

3. In the Destination Type box, select Message Queue.

4. In the Address box, type the address of the local or remote private Microsoft message queue that
you have configured for receiving messages from Acumatica ERP, such as MyComputer\private$
\TestQueueForPushNotificatons.

5. For each generic inquiry for which you want Acumatica ERP to send notifications on changes in the
inquiry results, do the following:

a. On the table toolbar of the Generic Inquiries tab, click Add Row. The new row has the
Active check box selected.

b. In the Inquiry Title column of the added row, select the generic inquiry for which you want
Acumatica ERP to send notifications.

6. For each built-in definition for which you want Acumatica ERP to send notifications on changes in
the results, do the following:

a. On the table toolbar of the Built-In Definitions tab, click Add Row. The new row has the
Active check box selected.

b. In the Class Name column of the added row, select the class that defines the data query for
which you want Acumatica ERP to send notifications.

7. On the form toolbar, click Save.

To Send Notifications to a SignalR Hub

1. On the System tab, click Integration. In the navigation pane, navigate to Configure > Push
Notifications (SM302000).

2. In the Destination Name box, type the name of the target notification destination, which can be
the name of your external application.

3. In the Destination Type box, select SignalR Hub. The Address box is filled in automatically with
PushNotificationsHub.

4. For each generic inquiry for which you want Acumatica ERP to send notifications on changes in the
inquiry results, do the following:

| Configuring Push Notifications | 174

a. On the table toolbar of the Generic Inquiries tab, click Add Row. The new row has the
Active check box selected.

b. In the Inquiry Title column of the added row, select the generic inquiry for which you want
Acumatica ERP to send notifications.

5. For each built-in definition for which you want Acumatica ERP to send notifications on changes in
the results, do the following:

a. On the table toolbar of the Built-In Definitions tab, click Add Row. The new row has the
Active check box selected.

b. In the Class Name column of the added row, select the class that defines the data query for
which you want Acumatica ERP to send notifications.

6. On the form toolbar, click Save.

Related Links

• Push Notifications

To Process Failed Notifications

To process the push notifications that Acumatica ERP could not send, you use the Process Push
Notifications (SM502000) form. On this form, you can view the notifications that Acumatica ERP has
failed to send, try to resend them, or delete the notifications.

If a notification has failed in Acumatica ERP before it was sent (for example, if Acumatica
ERP could not retrieve the data for the notification), this notification is not displayed in
the table on the Process Push Notifications form. Acumatica ERP saves the information about
these notifications in the PushNotificationsErrors database table if the api:push-
notifications:enable-dead-message-log key is set to true in the web.config file of the
Acumatica ERP instance.

To View a Notification

1. On the System tab, click Integration. In the navigation pane, navigate to Process > Process
Push Notifications (SM502000).

2. In the table on the form, select the row that contains the notification you want to view.

3. On the form toolbar, click Show Notification.

4. In the Notification Event dialog box, which opens, view the notification in JSON format. For
details on the format of the notification, see Push Notification Format.

To Resend Notifications

1. On the System tab, click Integration. In the navigation pane, navigate to Process > Process
Push Notifications (SM502000).

2. Do one of the following:

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=bb6d830e-80b8-45fd-9efe-cc20c158c702
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=bb6d830e-80b8-45fd-9efe-cc20c158c702
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=bb6d830e-80b8-45fd-9efe-cc20c158c702

| Configuring Push Notifications | 175

• If you want to resend particular notifications, in the table on the form, select the check boxes
in the rows that correspond to the notification you want to send, and click Send on the form
toolbar.

• If you want to resend all notifications, on the form toolbar, click Send All on the form toolbar.

To Delete Notifications

1. On the System tab, click Integration. In the navigation pane, navigate to Process > Process
Push Notifications (SM502000).

2. Do one of the following:

• If you want to delete particular notifications, in the table on the form, select the unlabeled
check boxes in the rows that correspond to the notifications you want to delete, and click
Delete on the form toolbar.

• If you want to delete all notifications, on the form toolbar, click Delete All.

3. On the form toolbar, click Save.

Related Links

• Process Push Notifications

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=bb6d830e-80b8-45fd-9efe-cc20c158c702

| Defining Push Notifications | 176

Defining Push Notifications
In Acumatica ERP or an Acumatica Framework-based application, you can configure the system to
send push notifications to a destination (such as an HTTP address) when specific data changes in the
system. The external application can receive these notifications and process the information on the
data changes if necessary. For more information on push notifications, see Configuring Push Notifications.

If this chapter, you can find information on how to configure push notifications in code.

In This Chapter

• To Create a Built-In Definition

• To Connect to the SignalR Hub

• To Add Additional Information to Push Notifications

• To Create a Custom Destination Type

To Create a Built-In Definition

In Acumatica ERP or an Acumatica Framework-based application, you can configure push notifications
for a query that is defined as a class in the source code of the application—that is, for a built-in
definition of the query. The built-in definition can be implemented in a project of your Acumatica ERP
extension library, in a Code item of an Acumatica ERP customization project, or in a project of your
Acumatica Framework-based application. (For the differences between the use of extension libraries
and Code items in a customization project, see Extension Library (DLL) Versus Code in a Customization
Project in the Customization Guide.)

To create a built-in definition, follow the instructions in this topic. For more information on the push
notifications, see Configuring Push Notifications in the Integration Development Guide.

To Create a Built-In Definition

1. Define a class that implements the
PX.PushNotifications.Sources.IInCodeNotificationDefinition interface in a project of your
Acumatica ERP extension library, in a Code item of an Acumatica ERP customization project, or in
a project of your Acumatica Framework-based application. The following code demonstrates the
definition of such a class.

using PX.PushNotifications.Sources;

public class TestInCodeDefinition : IInCodeNotificationDefinition
{
}

2. In the class that implements the IInCodeNotificationDefinition interface, implement
the GetSourceSelect() method of the interface so that the method satisfies the following
requirements:

• The method must return a tuple of a BqlCommand object, which defines the data query, and a
PXDataValue array, which defines the parameters that should be passed to the query.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6eef9fa0-ab15-4c9f-8376-3c4f1b4118a4
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6eef9fa0-ab15-4c9f-8376-3c4f1b4118a4

| Defining Push Notifications | 177

• The data query that the method defines should adhere to Recommendations for the Data Queries in
the Integration Development Guide.

The following example shows the GetSourceSelect() method implementation.

using PX.Data;
using PX.PushNotifications.Sources;
using PX.PushNotifications.UI.DAC;

public class TestInCodeDefinition : IInCodeNotificationDefinition
{
 public Tuple<BqlCommand, PXDataValue[]> GetSourceSelect()
 {
 return
 Tuple.Create(
 PXSelectJoin<PushNotificationsHook,
 LeftJoin<PushNotificationsSource,
 On<PushNotificationsHook.hookId,
 Equal<PushNotificationsSource.hookId>>>>
 .GetCommand(), new PXDataValue[0]);
 }
}

3. In the class that implements the IInCodeNotificationDefinition interface, implement the
GetRestrictedFields() method of the interface so that the method satisfies the following
requirements:

• The method must return an array of IBqlField-derived types, which contains the fields that
should be returned from the query.

• If you need to return all fields, the method must return null.

The following code shows an example of the implementation of the GetRestrictedFields()
method.

using PX.Data;
using PX.PushNotifications.Sources;
using PX.PushNotifications.UI.DAC;

public class TestInCodeDefinition : IInCodeNotificationDefinition
{
 ...

 public Type[] GetRestrictedFields()
 {
 return new []
 {
 typeof(PushNotificationsHook.address),
 typeof(PushNotificationsHook.type),
 typeof(PushNotificationsSource.designID),
 typeof(PushNotificationsSource.inCodeClass),
 typeof(PushNotificationsSource.lineNbr)
 };
 }

| Defining Push Notifications | 178

}

4. Compile your Acumatica ERP extension library or Acumatica Framework-based application, or
publish the customization project with the Code item that contains the class implementation.

5. Run Acumatica ERP or your Acumatica Framework-based application, and make sure that you
can select the new built-in definition by its class name on the Built-In Definitions tab of the
Push Notifications (SM302000) form. The class of the built-in definition, which implements the
IInCodeNotificationDefinition interface, is detected by the system and automatically added to
the list of classes available for selection on the tab.

You can obtain the results of the data query defined with a built-in definition
by using the following endpoint: http(s)://<Acumatica ERP instance URL>/
PushNotifications/<full class name of the built-in definition>. For
example, suppose that you want to retrieve the results of the data query defined
with the PX.PushNotifications.Sources.TestInCodeDefinition class from a local
Acumatica ERP instance with the name AcumaticaDB. You should use the following
URL to obtain the data: http(s)://localhost/AcumaticaDB/PushNotifications/
PX.PushNotifications.Sources.TestInCodeDefinition. The endpoint returns the
data in JSON format.

Related Links

• To Configure Push Notifications

• IInCodeNotificationDefinition Interface

To Connect to the SignalR Hub

If you want your external application to receive push notifications from Acumatica ERP or an Acumatica
Framework-based application but you cannot publish a web hook (for example, for security reasons),
the system can send notifications to the SignalR hub, from which any connected application can receive
the notifications.

To connect the external application to the SignalR hub, follow the instructions in this topic. For more
information on push notifications, see Configuring Push Notifications.

To Connect to the SignalR Hub

1. In your external application, set up a Basic authentication token to authenticate the application in
Acumatica ERP or an Acumatica Framework-based application, as shown in the following code.

using System;
using System.Text;

class Program
{
 static void Main(string[] args)
 {
 var login = "admin";
 var tenant = "Tenant";
 var password = "123";
 // Set up a Basic authentication token
 var basicAuthToken = Convert.ToBase64String(

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ba35054f-3485-415e-9785-da1195cb708b

| Defining Push Notifications | 179

 Encoding.UTF8.GetBytes(login+"@"+tenant+":"+password));
 }
}

2. In your external application, connect to an instance of Acumatica ERP or an Acumatica Framework-
based application, as shown in the following code.

using System;
using System.Text;
using Microsoft.AspNet.SignalR.Client.Hubs;

class Program
{
 static void Main(string[] args)
 {
 ...
 //Connect to an Acumatica ERP instance
 var connection = new HubConnection("http://localhost:8081/AcumaticaDB/");
 connection.Headers.Add("Authorization", "Basic "+basicAuthToken);
 }
}

3. In your external application, create a proxy to the SignalR hub, based on the name of the hub that
was specified in the Destination Name box when the push notification was defined on the Push
Notifications (SM302000) form.

using System;
using System.Text;
using Microsoft.AspNet.SignalR.Client.Hubs;

class Program
{
 static void Main(string[] args)
 {
 ...
 //Create a proxy to hub
 //Use "PushNotificationsHub" as the address of the hub
 var myHub = connection.CreateHubProxy("PushNotificationsHub");
 connection.Start().ContinueWith(task =>
 {
 if(task.IsFaulted)
 {
 Console.WriteLine(
 "There was an error during open of the connection:{0}",
 task.Exception.GetBaseException());
 }
 else
 {
 //Instead of "TestSignalR", specify the name
 //that you specified on the Push Notifications form
 myHub.Invoke<string>("Subscribe", "TestSignalR").Wait();
 }
 }).Wait();
 }

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ba35054f-3485-415e-9785-da1195cb708b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ba35054f-3485-415e-9785-da1195cb708b

| Defining Push Notifications | 180

}

4. In your external application, define the class for a notification, as shown in the following code. For
details on the format of the push notifications, see Push Notification Format.

public class NotificationResult
{
 public object[] Inserted { get; set; }
 public object[] Deleted { get; set; }
 public string Query { get; set; }
 public string CompanyId { get; set; }
 public Guid Id { get; set; }
 public long TimeStamp { get; set; }
 public Dictionary<string, object> AdditionalInfo { get; set; }
}

5. In your external application, process notifications. The following code displays the number of
inserted and updated records specified in the notification in the console application window.

using System;
using System.Text;
using Microsoft.AspNet.SignalR.Client.Hubs;

class Program
{
 static void Main(string[] args)
 {
 ...
 //Process the notifications
 myHub.On<NotificationResult>("ReceiveNotification", nr =>
 {
 Console.WriteLine("Inserted {0}", nr.Inserted.Length);
 Console.WriteLine("Deleted {0}", nr.Deleted.Length);
 });
 Console.Read();
 connection.Stop();
 }
}

6. Compile and test your application.

Related Links

• To Configure Push Notifications

To Add Additional Information to Push Notifications

In Acumatica ERP or an Acumatica Framework-based application, you can add additional information
to push notifications, such as the username of the user that performed the data change or the
business date when the data transaction is performed. The additional information can be added to
the AdditionalInfo element of notifications in JSON format. For more information on the format of
notifications, see Push Notification Format in the Integration Development Guide.

| Defining Push Notifications | 181

The additional information that you add to push notifications is included in all notifications
that are sent from the Acumatica ERP or Acumatica Framework instance on which the
additional information is configured.

The dictionary of additional information can be implemented in a project of your Acumatica ERP
extension library, in a Code item of an Acumatica ERP customization project, or in a project of your
Acumatica Framework-based application. (For the differences between the use of extension libraries
and Code items in a customization project, see Extension Library (DLL) Versus Code in a Customization
Project in the Customization Guide.)

To add additional information to push notifications, follow the instructions in this topic. For more
information on the push notifications, see Configuring Push Notifications in the User Guide.

To Add Additional Information to Push Notifications

1. Define a class that implements the PX.Data.PushNotifications.ICommitEventEnricher
interface in a project of your Acumatica ERP extension library, in a Code item of an Acumatica ERP
customization project, or in a project of your Acumatica Framework-based application.

2. In the class that implements the ICommitEventEnricher interface, implement the Enrich()
method of the interface. In the method, add the properties that you want to be returned in push
notifications.

The Enrich() method is called in the PX.Data.PXTransactionScope.Dispose()
method. Therefore, the Enrich() method must not return data that is not accessible in
this scope.

The following code shows a sample implementation of the ICommitEventEnricher interface, which
adds the business date and the name of the user to the AdditionalInfo element of notifications in
JSON format.

using PX.Data;
using PX.Data.PushNotifications;

public class CommitEventEnricher : ICommitEventEnricher
{
 public void Enrich(IQueueEvent commitEvent)
 {
 var businessDate = PXContext.PXIdentity?.BusinessDate;
 var userName = PXContext.PXIdentity?.IdentityName;
 commitEvent.AdditionalInfo.Add(nameof(businessDate), businessDate);
 commitEvent.AdditionalInfo.Add(nameof(userName), userName);
 }
}

3. Compile your Acumatica ERP extension library or Acumatica Framework-based application, or
publish the customization project with the Code item that contains the class implementation.

4. Run Acumatica ERP or your Acumatica Framework-based application and make sure that when
the results of the query change, the application includes the additional information in the
AdditionalInfo element of the notifications in JSON format, as shown in the following notification
example.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6eef9fa0-ab15-4c9f-8376-3c4f1b4118a4
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6eef9fa0-ab15-4c9f-8376-3c4f1b4118a4

| Defining Push Notifications | 182

{
 ...
 "TimeStamp":636295833829493672,
 "AdditionalInfo":
 {
 "businessDate":"2017-05-05T15:16:23.1",
 "userName":"admin"
 }
}

Related Links

• To Configure Push Notifications

• Push Notification Format

To Create a Custom Destination Type

In Acumatica ERP or an Acumatica Framework-based application, you can send push notifications to
the notification destinations, which can be of a predefined type (which is webhook, message queue, or
SignalR hub) or of a custom type, which you can implement in the code of the application.

The notification destination of a custom type can be implemented in a project of your Acumatica ERP
extension library, in a Code item of an Acumatica ERP customization project, or in a project of your
Acumatica Framework-based application. (For the differences in the use of extension libraries and Code
items in a customization project, see Extension Library (DLL) Versus Code in a Customization Project in the
Customization Guide.)

To create a custom destination, follow the instructions in this topic. For more information on the push
notifications, see Configuring Push Notifications in the Integration Development Guide.

To Create a Custom Destination Type

1. Define a class that implements the
PX.PushNotifications.NotificationSenders.IPushNotificationSender interface, which is a
sender of push notifications, in a project of your Acumatica ERP extension library, in a Code item
of an Acumatica ERP customization project, or in a project of your Acumatica Framework-based
application.

2. In the class that implements the IPushNotificationSender interface, implement the following
methods and properties of the interface:

• The Address property, which is the address to which the system should send notifications.
A user specifies the value of this property in the Address box on the Push Notifications
(SM302000) form. The property uses the following syntax.

string Address { get; }

• The Name property, which is the name of the notification destination. A user specifies the value
of this property in the Destination Name box on the Push Notifications (SM302000) form. Use
the following syntax for the property.

string Name { get; }

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6eef9fa0-ab15-4c9f-8376-3c4f1b4118a4
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ba35054f-3485-415e-9785-da1195cb708b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ba35054f-3485-415e-9785-da1195cb708b

| Defining Push Notifications | 183

• The Send method, which sends a notification synchronously and uses as the parameters the
notification to be sent and a cancellation token. The method uses the following syntax.

void Send(
 NotificationResultWrapper results,
 CancellationToken cancellationToken
);

• The SendAndForget method, which sends a notification without blocking the current thread.
We recommend that you use HostingEnvironment.QueueBackgroundWorkItem in the method
implementation to delegate the execution to a parallel thread. The following code shows a
sample implementation of the method.

using System;
using System.Threading;
using PX.PushNotifications;
using PX.PushNotifications.NotificationSenders;

public void SendAndForget(
 NotificationResultWrapper result,
 CancellationToken cancellationToken,
 Action onSendingFailed,
 Action finalizer)
{
 try
 {
 Send(result, cancellationToken);
 }
 catch (Exception e)
 {
 onSendingFailed($"Send to target {Name} failed: ({e.Message})");
 }
 finally
 {
 finalizer();
 }
}

3. Define a class that implements the
PX.PushNotifications.NotificationSenders.IPushNotificationSenderFactory interface,
which creates a sender of push notifications, in a project of your Acumatica ERP extension library,
in a Code item of an Acumatica ERP customization project, or in a project of your Acumatica
Framework-based application.

4. In the class that implements the IPushNotificationSenderFactory interface, implement the
following methods and properties of the interface:

• The Create method, which creates a sender and uses as the parameters the destination
address, the name of the notification destination, and the additional parameters (such as a
header for an HTTP address). Use the following syntax for the method.

IPushNotificationSender Create(
 string address,
 string name,

| Defining Push Notifications | 184

 IDictionary<string, object> additionalParameters
);

• The Type property, which is a string identifier of the destination type that is exactly four
characters long. The value of this property is stored in the database. The property uses the
following syntax.

string Type { get; }

• The TypeDescription property, which is a string label of the destination type. A user selects
the value of this property in the Destination Type box on the Push Notifications (SM302000)
form. Use the following syntax for the property.

string TypeDescription { get; }

5. Compile your Acumatica ERP extension library or Acumatica Framework-based application, or
publish the customization project that contains the Code item or items with the implementation of
the classes.

6. Run Acumatica ERP or your Acumatica Framework-based application, and test the new destination
type.

Related Links

• To Configure Push Notifications

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ba35054f-3485-415e-9785-da1195cb708b

| Configuring Webhooks | 185

Configuring Webhooks
A webhook helps you to integrate external applications that provide data in their own format and
need to submit this data to Acumatica ERP. For example, HubSpot collects data about email clicks and
can export this data in a specific format to a particular URL. By using a webhook, you can configure
Acumatica ERP to process the data submitted to a particular URL and save the data in Acumatica ERP.

To configure the system to process data from an external application in Acumatica ERP with webhooks,
you need to perform the following general steps:

1. Create an implementation class that will process the requests from the external application. For
details, see To Create an Implementation Class.

2. Register the implementation class on the Webhooks (SM304000) form of Acumatica ERP. For
details, see To Register an Implementation Class.

3. Copy the URL that is generated during the registration of the implementation class, and then
specify this URL in the external application so that it sends requests to this URL. For details, see To
Configure the External Application.

4. Test the processing of the requests. For details, see To Manage Request Log.

If the webhook must be used on multiple Acumatica ERP instances, you can include the webhook in a
customization project and publish this project to the needed Acumatica ERP instances. For details, see
Webhooks.

To Create an Implementation Class

An implementation class is a custom class that processes the requests passed to a particular URL.
This class must implement the IWebhookHandler interface. For more convenient implementation, we
recommend that the you implement this interface in a graph (that is, a class of the PXGraph type).

The IWebhookHandler interface has one method with the following signature.

Task<IHttpActionResult> ProcessRequestAsync
 HttpRequestMessage request, CancellationToken cancellationToken)

To Create an Implementation Class

To create an implementation class, do the following:

1. Implement the IWebhookHandler interface.

2. In the ProcessRequest method, do the following:

a. Process authentication information in the request.

b. Transform the data in the external format to data that can be saved in Acumatica ERP.

c. Invoke graph methods that save the data in Acumatica ERP.

3. Place the DLL file with the implementation class in the Bin folder of the Acumatica ERP instance.

If you already have a DLL file with the implementation class as a part of a customization project (a
webhook added as a customization item), instead of placing the DLL file in the Bin folder, you can

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0302a6bd-3eab-45d2-a0ed-dba3ea03b917
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=1f6d085c-7968-4a4f-8b77-f37773911fea

| Configuring Webhooks | 186

publish the customization project. For details, see To Add a Webhook to a Project and To Publish a Single
Project.

To Register an Implementation Class

After you have created an implementation class and placed the DLL of the class in the Bin folder of
your Acumatica ERP instance, you need to register the implementation class.

To Register an Implementation Class

To register an implementation class, do the following:

1. In Acumatica ERP, open the Webhooks (SM304000) form.

2. In the Webhook Name box, enter the name of the webhook.

3. In the Implementation Class box, enter the name of the implementation class you have created.

4. On the form toolbar, click Save.

The system inserts into the URL box the URL that can be used by an external application to send
data to Acumatica ERP. You will need this URL to configure the external application.

To Configure the External Application

For an external application to send requests to Acumatica ERP, you need to configure the external
application by specifying in it the URL generated on the Webhooks (SM304000) form.

To Configure the External Application

In the external application, you should do the following:

1. Specify the URL that has been generated on the Webhooks (SM304000) form for the webhook, so
that the external application sends requests to this URL.

2. Implement requests to Acumatica ERP that satisfy the following requirements:

• The request type must be POST or GET.

• The body must contain only data that can be transferred with the HTTP protocol.

• The body of the request must be no longer than the value specified by the
webhook:maxrequestsize key of the web.config file of the Acumatica ERP instance. By
default, this value is 1 MB. You can change the default value by specifying a different value in
the key of web.config.

To Manage Request Log

On the Request History tab of the Webhooks (SM304000) form, you can remove requests from the
log and check the statuses of the processing of requests. You can also specify the type and amount of
requests to be stored in the log.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f46e7f1f-b945-4eb5-bb61-184242535080
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=739ba5bb-cf0e-40ff-91ca-4f1f1723db1f
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=739ba5bb-cf0e-40ff-91ca-4f1f1723db1f
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0302a6bd-3eab-45d2-a0ed-dba3ea03b917
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0302a6bd-3eab-45d2-a0ed-dba3ea03b917
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0302a6bd-3eab-45d2-a0ed-dba3ea03b917
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0302a6bd-3eab-45d2-a0ed-dba3ea03b917

| Configuring Webhooks | 187

To View the Request Log

To view the request details, do the following:

1. In Acumatica ERP, open the Webhooks (SM304000) form.

2. In the Webhook Name box of the Summary area, select the webhook for which you want see
requests.

3. On the Request History tab, select the request in the table.

4. On the table toolbar, click Show Request Details.

5. In the Request Details dialog box, which opens, view the details of the request, the response,
and any errors.

6. To close the dialog box, click Close.

7. Optional: If you want to remove all requests from the log, on the tab toolbar, click Clear History.

You can limit the length of the body of each request that is stored in the history by using the
webhook:maxbodysizetolog key of the web.config file of the Acumatica ERP instance. By
default, the length is 10 KB. In the request details stored in the history, the system trims
the part of the body that exceeds the specified length.

Webhook Configuration Example

Suppose you need to register employee time activities. For that purpose, you plan to use the Toggl
app, which is used to track employees’ time. To send data about tracked time periods from Toggl to
Acumatica ERP, you need to create a webhook. The following example shows how to implement time
tracking in Acumatica ERP by using Toggl.

Step 1: Preparing Toggl

First, you need to prepare the external application, which in this case is Toggl. Do the following:

1. On toggl.com, sign up for an account, and sign in to that account.

2. Create a time entry, which you will use later to test the connection. In the entry, specify the entry
description. Otherwise, you may get the 500 Internal Server Error during testing.

3. On the Toggl website, open your profile page, and copy the API token, which is located at the
bottom of the page.

Step 2: Creating an Implementation Class

To create an implementation class, do the following:

1. In Visual Studio, create a new project called TestWebhook based on the Class Library (.NET
Framework) template.

2. In the project, create a new class with the following code.

namespace TestWebhook

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0302a6bd-3eab-45d2-a0ed-dba3ea03b917

| Configuring Webhooks | 188

{
 public class ToggleWebhookHandler : IWebhookHandler
 {
 public async Task<System.Web.Http.IHttpActionResult> ProcessRequestAsync(
 HttpRequestMessage request, CancellationToken cancellationToken)
 {
 using (var scope = GetAdminScope())
 {
 var graph = PXGraph.CreateInstance<TimeEntry>();
 var timeEntry = await request.Content.ReadAsAsync<dynamic>(cancellationToken);
 int duration = timeEntry.duration;
 var ownerId = 2892;
 DateTimeOffset date = timeEntry.at;
 string summary = timeEntry.description;
 string project = timeEntry.project?.name ?? "X";
 var ta = graph.Items.Insert(new PMTimeActivity() { Date = date.LocalDateTime,
 TimeSpent = duration, OwnerID = new Guid("B5344897-037E-4D58-
B5C3-1BDFD0F47BF9"),
 Summary = summary });
 graph.Items.Cache.SetValueExt<PMTimeActivity.projectID>(ta, project);
 graph.Items.Cache.SetValueExt(ta, "NoteText", "Created from Toggle");
 graph.Actions.PressSave();
 }
 return new OkResult(request);
 }
 private IDisposable GetAdminScope()
 {
 var userName = "admin";
 if (PXDatabase.Companies.Length > 0)
 {
 var company = PXAccess.GetCompanyName();
 if (string.IsNullOrEmpty(company))
 {
 company = PXDatabase.Companies[0];
 }
 userName = userName + "@" + company;
 }
 return new PXLoginScope(userName);
 }
 }
}

In the code above, you are implementing the ProcessRequestAsync method of the
IWebhookHandler interface. Inside the method, you are creating an instance of the TimeEntry
graph, parsing the contents of the request, inserting the parsed data in the cache, and saving your
changes to the database.

For more information on working with graphs, refer to Implementing Business Logic.

3. Add references to the PX.Data, PX.Objects, and PX.Common assemblies located in the Bin folder of
your Acumatica ERP instance.

4. Add the following using directives.

using System;

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6aea8e6f-3cc6-4f61-88a3-d7f49cd6c4b7

| Configuring Webhooks | 189

using System.Net.Http;
using System.Threading;
using System.Threading.Tasks;
using System.Web.Http.Results;
using PX.Data;
using PX.Data.Webhooks;
using PX.Objects.CR;
using PX.Objects.PM;

5. Build the project.

Step 3: Preparing the Webhook

To prepare the webhook, do the following:

1. Copy the TestWebhook.dll file of the class library that you created in the previous step to the Bin
folder of your Acumatica ERP instance.

2. In Acumatica ERP, open the Webhooks (SM304000) form.

3. In the Webhook Name box, enter the name of the webhook: TestWebhook.

4. In the Implementation Class box, start typing the name of the class: ToggleWebhookHandler.
The system will suggest the name of the class based on the added DLL. Select the suggested
name: TestWebhook.ToggleWebhookHandler.

5. On the page toolbar, click Save.

In the URL box, the generated URL appears. An example of this URL is shown below.

http://localhost/PhoneRepairShop/Webhooks/
 Company/3d5c2d34-26ed-48bf-9879-cd7f52163c0a

If localhost is inserted in the URL, replace it with your computer address so that the webhook is
accessible from outside your computer.

Step 4: Saving the Webhook to a Customization Project

To simplify deploying a created webhook in another environment, you can add the created webhook to
a customization project by doing the following:

1. Open a customization project in the Customization Project Editor. For details, see To Open a Project.
For details on creating a project, see To Create a New Project

2. In the navigation pane, click Webhooks.

3. On the Webhooks page, which opens, click Add New Record.

4. In the Add Webhooks dialog box, which opens, select the TestWebhook row, and click OK.

5. Add the TestWebhook.dll file as a file item:

a. In the navigation pane, click Files.

b. On the Custom Files page toolbar, click Add New Record.

c. In the Add Files dialog box, which opens, select the Bin\TestWebhook.dll file.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0302a6bd-3eab-45d2-a0ed-dba3ea03b917
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=16a7ba41-cc79-4afd-bd68-0581a292d932
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=cf613c17-34b8-4477-9bff-e892d5bfca41

| Configuring Webhooks | 190

d. Click Save.

The dialog box is closed, and the file appears on the Custom Files page.

To deploy this webhook in a different environment, you can import and publish this customization
project instead of adding the DLL file and registering file on the Webhooks form. For details, see
Managing Customization Projects and To Add a Webhook to a Project.

Step 5: Configuring the External Application

In general, you should configure your external application by specifying the URL generated after the
webhook registration in the external application.

However, in this case, the Toggl application cannot interact using HTTP, so you should use the
Zapier application to help connect the Toggl application and Acumatica ERP. To configure the Zapier
application, do the following:

1. On zapier.com, sign up for an account, and sign in to that account.

2. Create a new zap based on the following template: zapier.com/app/editor/template/90071.

If a template is not available, create a new zap which connects the Toggle app with
Acumatica ERP.

In the new zap, specify the Toggl account you created in Step 1.

3. In the Customize Time Entry section of a new zap, click the Test and Review button. Make sure
the test time entry you created in Step 1 is displayed.

4. In the Customize Post section, add the URL you generated in Step 3.

Make sure the connection is valid.

5. Turn on the created zap.

Step 6: Testing the Webhook

To test the webhook you have created, do the following:

1. On the Toggl website, create a time entry and specify its description.

The information about the time entry is sent to Acumatica ERP via Zapier.

You can specify a particular project to which the time activity will be registered. To do
that, you need to specify the project name in Toggl and have a default task for this
project specified on the Tasks tab of the Projects (PM301000) form.

2. Open the Webhooks (SM304000) form. On the Request History tab, you will see the POST request
sent from Toggl.

3. To view the body of the request, in the table, select the request, and on the table toolbar, click
Show Request Details.

The request should contain the body in JSON format with the time entry details.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=03b07c52-2ba7-47f0-9b91-00b36aaf21aa
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f46e7f1f-b945-4eb5-bb61-184242535080
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=81c86417-3bde-444b-8f1c-682928d31a0c
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0302a6bd-3eab-45d2-a0ed-dba3ea03b917

| Configuring Webhooks | 191

Related Links

• Webhooks

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=1f6d085c-7968-4a4f-8b77-f37773911fea

| Contract-Based REST API Reference | 192

Contract-Based REST API Reference
Acumatica ERP provides you with the contract-based REST APIs of web service endpoints and
with the contract-based REST API of an Acumatica ERP instance. The methods of a REST API are
provided in a swagger.json file, which is an OpenAPI 2.0 (formerly known as Swagger 2.0) file.
For more information about the OpenAPI specification, see https://www.openapis.org. You can use the
swagger.json files to review the APIs of the instance and endpoints and build the client applications
for Acumatica ERP based on these files.

In Acumatica ERP, you can view the endpoints' REST APIs on the Web Service Endpoints (SM207060)
form.

In This Chapter

• Contract-Based REST API of a Web Service Endpoint

• Contract-Based REST API of an Instance

• To Import a REST Schema to a Visual Studio Solution

Related Links

• Working with the Contract-Based REST API

•

Contract-Based REST API of a Web Service Endpoint

You can retrieve the swagger.json file of a web service endpoint by clicking View Endpoint Service
> OpenAPI 2.0 on the Web Service Endpoints (SM207060) form or by using the following URL.

http://<Base endpoint URL>/swagger.json

In this URL, <Base endpoint URL> is the URL of the contract-based endpoint through which you are
going to work with Acumatica ERP. This URL has the following format.

http://<Acumatica ERP instance URL>/entity/<Endpoint name>/<Endpoint version>/

You can specify the company URL parameter to obtain information on the API of the endpoint
available in a particular company. For example, suppose that you want to retrieve the API reference
of the custom endpoint with the name MyEndpoint and Version 18.200.001 available in the
MyCompany company from a local Acumatica ERP instance with the name AcumaticaDB. You
would use the following URL to obtain the swagger.json file: http://localhost/AcumaticaDB/entity/
MyEndpoint/18.200.001/swagger.json?company=MyCompany.

If no company is specified, the API of the endpoint available in the company to which the user is
currently logged in is returned.

Contract-Based REST API of an Instance

You can retrieve the swagger.json file of an Acumatica ERP instance by using the following URL.

https://www.openapis.org
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c620452-c947-4bd6-a9eb-2a8fc04226be
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c620452-c947-4bd6-a9eb-2a8fc04226be

| Contract-Based REST API Reference | 193

http://<Acumatica ERP instance URL>/entity/swagger.json

For example, if you use a local instance with the name AcumaticaU100, you would retrieve the
swagger.json file related to this instance by using the following URL: http://AcumaticaU100/entity/
swagger.json.

The contract-based REST API of an instance contains the methods that do the following:

• Signing in to Acumatica ERP

• Signing out from Acumatica ERP

• Getting the Acumatica ERP version

To Import a REST Schema to a Visual Studio Solution

You can create a Visual Studio project and use the REST schema contained in the Acumatica ERP
swagger.json files for interaction with Acumatica ERP. You import a REST schema to a Visual Studio
solution in two stages:

1. You generate Visual Studio packages from a REST schema.

2. You include the generated Visual Studio packages in your Visual Studio solution.

The following sections provide instructions on these stages, as well as an example of the use of the
imported REST schema.

To Generate Visual Studio Packages from a REST Schema

1. Obtain the swagger.json file you need.

2. Open the website https://editor.swagger.io.

3. Insert the contents of the swagger.json file into the website's edit box.

The website suggests that you convert the JSON contents to YAML format.

4. Click OK to agree to the suggestion or Cancel to leave the contents in JSON format; neither of
these actions affects the result of parsing the file.

The website engine parses the REST schema contained in the swagger.json file and create the
visual representation of the REST schema.

5. On the Generate Client menu, invoke the csharp command.

The csharp-client-generated.zip archive is downloaded to your computer. The archive contains
the IO.Swagger Visual Studio solution, two Visual C# projects (IO.Swagger and IO.Swagger.Test),
and other files.

6. Extract the csharp-client-generated.zip archive.

7. Make sure that the IO.Swagger solution can be built.

https://editor.swagger.io

| Contract-Based REST API Reference | 194

To compile the IO.Swagger and IO.Swagger.Test projects, you may have to explicitly specify
the path to the RestSharp.dll library. In addition, you may get compilation errors related
to the misuse of the override keyword and the absence of the BaseValidate method. To fix
these errors, remove the misused override keyword and the entire command that contains
the nonexistent BaseValidate method.

To Add the Generated Projects to a Visual Studio Solution

1. In Visual Studio, create a C# project.

2. In your project, add a reference to the Newtonsoft.Json library as follows:

a. In Solution Explorer, right-click your project.

b. Click Manage NuGet Packages.

c. Select the Browse tab.

d. Search for the Newtonsoft.Json library, and install it.

3. In the folders containing the unpacked contents from the csharp-client-generated.zip archives,
rename the IO.Swagger projects and the IO.Swagger namespaces to avoid the name conflict.

You do not have to add the IO.Swagger.Test projects to the solution of your C# project.

4. Add the former IO.Swagger projects to the solution of your C# project.

5. In your project, add a reference to the RestSharp.dll library that is used by either of the added
projects.

6. Add your code that uses the REST API to your project.

Example of the Use of the Imported REST Schema

Following is an example of the use of the projects that are generated from swagger.json files. One
swagger.json file is related to an Acumatica ERP instance, and another swagger.json file is related
to the endpoint with the name Default and Version 18.200.001. The namespace of the instance
REST API is renamed to Instance_Api, and the namespace of the endpoint REST API is renamed to
Default_18_Api. In the example, sign-in occurs, all available sales orders are retrieved, and then
sign-out is performed.

using Default_18_Api.Api;
using Default_18_Api.Model;
using Instance_Api.Api;
using Instance_Api.Model;
using System;
using System.Collections.Generic;
using System.Net;

namespace AC126585
{
 class Program
 {
 const string SiteURL = "http://localhost/AcumaticaERP/"; // Specify your instance
 const string Username = "admin";

| Contract-Based REST API Reference | 195

 const string Password = "123"; // Specify your admin password
 const string Tenant = null;
 const string Branch = null;
 const string Locale = null;

 static void Main(string[] args)
 {
 Console.WriteLine("REST API example");

 var authApi = new AuthApi(SiteURL);
 try
 {
 authApi.Configuration.ApiClient.RestClient.CookieContainer = new
 CookieContainer();

 // Make an attempt to sign in
 authApi.AuthLogin(new Credentials(Username, Password, Tenant, Branch,
 Locale));
 Console.WriteLine("Signed In...");

 // Create a SalesOrderApi object to work with sales orders
 SalesOrderApi salesOrderApi = new SalesOrderApi(SiteURL + "entity/
default/18.200.001");
 // Use the cookies that are created while signing in
 salesOrderApi.Configuration.ApiClient.RestClient.CookieContainer =
 authApi.Configuration.ApiClient.RestClient.CookieContainer;
 // Get all available sales orders
 List<SalesOrder> salesOrders = salesOrderApi.SalesOrderGetList();
 Console.WriteLine("Number of sales orders: " +
 salesOrders.Count.ToString());
 }
 catch (Exception e)
 {
 Console.WriteLine(e.ToString());
 }
 finally
 {
 // Signing out
 authApi.AuthLogout();
 Console.WriteLine("Signed Out...");
 Console.ReadLine();
 }
 }
 }
}

You can find other examples in the AcumaticaRESTAPIClientForCSharp repository on GitHub.

https://github.com/Acumatica/AcumaticaRESTAPIClientForCSharp

| Contract-Based SOAP API Reference | 196

Contract-Based SOAP API Reference
In this chapter, you will find the reference information for the main objects and methods of the
contract-based SOAP API; these objects and methods are used to transfer data to and from Acumatica
ERP. This chapter covers the following methods, which are exposed by the DefaultSoapClient class:

Semantics and syntax of some methods and properties are different depending on the
version of the system contract.

• Login() Method

• Logout() Method

• SetBusinessDate() Method

• Get() Method

• GetList() Method (Contract Version 3)

• GetList() Method (Contract Version 2)

• Put() Method

• Delete() Method

• Invoke() Method

• GetProcessStatus() Method

• GetFiles() Method

• PutFiles() Method

• GetCustomFieldSchema() Method

You will also find descriptions of the following properties:

• Attributes Property

• CustomFields Property

• ReturnBehavior Property (Contract Version 3)

• ReturnBehavior Property (Contract Version 2)

Login() Method

You use the Login() method of a DefaultSoapClient object to make the client application sign in to
Acumatica ERP.

| Contract-Based SOAP API Reference | 197

Instead of directly signing in to Acumatica ERP, your application can use the OAuth 2.0
authorization. For details about OAuth 2.0, see Authorizing Client Applications to Work with
Acumatica ERP.

Syntax

public void Login(string name, string password, string tenant, string branch, string
 locale)

Parameters

• name: The username that the application should use to sign in to Acumatica ERP, such as
"admin".

• password: The password for the username, such as "123".

• tenant: The name of the tenant to which the application should sign in, such as "MyStore". You
can view the name that should be used for the tenant in the Login Name box of the Tenants
(SM203520) form.

• branch: The ID of the branch to which the application should sign in. You can view the ID of the
branch in the Branch ID box of the Branches (CS102000) form.

• locale: The locale that should be used in Acumatica ERP. You should specify the locale in the
System.Globalization.CultureInfo format converted to string, as with "EN-US".

This parameter has been developed for future use. You do not need to set its value.

Example

The following code causes the client to sign in to Acumatica ERP by using the parameters that are
specified in the application settings.

using (var soapClient = new DefaultSoapClient())
{
 //Log in to Acumatica ERP
 soapClient.Login
 (
 Properties.Settings.Default.UserName,
 Properties.Settings.Default.Password,
 Properties.Settings.Default.TenantName,
 Properties.Settings.Default.BranchName,
 null
);
}

Usage Notes

For each call of the Login() method, you must call the Logout() method after you finish your work
with Acumatica ERP to close the session.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=3f8ba9f5-9e04-4568-a93e-862ba7b92c2b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b97ab72d-4ab4-4f02-b69c-f7f61b316ced

| Contract-Based SOAP API Reference | 198

You should take into account Acumatica ERP license API limits when using the Login() method. For
details, see License Restrictions for API Users.

Related Links

• Logout() Method

Logout() Method

You use the Logout() method of a DefaultSoapClient object to make the client application sign out
from Acumatica ERP.

Syntax

public void Logout()

Example

The following code shows how to make the client application sign out from Acumatica ERP.

using (var soapClient = new DefaultSoapClient())
{
 //Sign in to Acumatica ERP
 ...
 try
 {
 //Work with Acumatica ERP through the web services API
 }
 finally
 {
 //Sign out from Acumatica ERP
 soapClient.Logout();
 }
}

Usage Notes

For each call of the Login() method, you must call the Logout() method after you finish your work
with Acumatica ERP to close the session. Therefore, we recommend that you call the Logout() method
within the finally block.

Related Links

• Login() Method

SetBusinessDate() Method

You use the SetBusinessDate() method to specify the business date in Acumatica ERP. You can set
the business date to any date to make the system insert this date into the date fields by default. The
business date is inserted into any new document that you create and is used in the default selection
parameters that appear on processing and inquiry screens.

| Contract-Based SOAP API Reference | 199

Syntax

public void SetBusinessDate(System.DateTime businessDate)

Parameter

• businessDate: The business date that should be used in Acumatica ERP.

Usage Notes

The business date resets to the current date of your computer after each login. Therefore, if you need
to specify a business date in your application, you should call the SetBusinessDate() method after
each client application login.

Get() Method

You use the Get() method to get one record that satisfies the specified conditions from Acumatica ERP.
The conditions must specify only one record in Acumatica ERP; otherwise, an error is returned. If you
need to get multiple records that satisfy the specified conditions, use the GetList() method instead.

Syntax

public Entity Get(Entity entity)

Parameter

• entity: The entity that specifies the record that should be obtained from Acumatica ERP.

Return Value

The method returns the Entity object that corresponds to the specified record.

Example

The following code gets a customer record with the specified customer ID.

Customer customer = new Customer
{
 CustomerID = new StringSearch { Value = "C000000003" },
};
Customer customerData = (Customer)soapClient.Get(customer);

GetList() Method (Contract Version 3)

This topic describes the GetList() method that is available in Version 3 of the system
contract.

You use the GetList() method to retrieve from an Acumatica ERP data entry form a list of records
that satisfy the specified conditions.

| Contract-Based SOAP API Reference | 200

Do not use the GetList() method to retrieve the records from an inquiry form; instead, use
the Put() method.

Syntax

public Entity[] GetList(Entity entity)

Parameter

• entity: The entity that specifies the conditions that must be met for the records to be returned
from Acumatica ERP.

Return Value

The method returns the array of Entity objects that correspond to the specified records.

Example

The following example gets the list of stock items that have the Active status and that were modified
within the past month. The code returns only the top-level fields of each stock item record (no fields of
the detail or linked entities are returned).

//Filter the items by the last modified date and status
StockItem stockItemsToBeFound = new StockItem
{
 LastModified = new DateTimeSearch
 {
 Value = DateTime.Now.AddMonths(-1),
 Condition = DateTimeCondition.IsGreaterThan
 },
 ItemStatus = new StringSearch { Value = "Active" }
};

//Get the list of stock items
Entity[] stockItems = soapClient.GetList(stockItemsToBeFound);

Usage Notes

• To specify the fields whose values you need to obtain for each entity, you use the ReturnBehavior
property of the entity.

• When the GetList() method is called, the system tries to optimize the retrieval of the records and
obtain all needed records in one request to the database (instead of requesting the records one by
one). If the optimization fails, the system returns an error, which specifies the entities or fields that
caused the failure of the optimized request. To prevent the error from being generated, you can do
any of the following:

• If you do not need to retrieve the entities or fields that caused the failure, you can exclude
these entities or fields from the list of requested fields by setting the ReturnBehavior property
to None for the entities, or by using the Skip classes of the needed value type (such as
StringSkip) for the fields.

• If you need to retrieve the entities of fields that have caused the failure, you can retrieve the
needed records one by one by using the Get() method.

| Contract-Based SOAP API Reference | 201

Related Links

• ReturnBehavior Property (Contract Version 3)

GetList() Method (Contract Version 2)

This topic describes the GetList() method that is available in Version 2 of the system
contract.

You use the GetList() method to retrieve from an Acumatica ERP data entry form a list of records
that satisfy the specified conditions.

Do not use the GetList() method to retrieve the records from an inquiry form; instead, use
the Put() method.

Syntax

public Entity[] GetList(Entity entity)

Parameter

• entity: The entity that specifies the conditions that must be met for the records to be returned
from Acumatica ERP.

Return Value

The method returns the array of Entity objects that correspond to the specified records.

Example

The following example gets the list of stock items that have the Active status and that were modified
within the past month. The code returns all fields of each stock item record.

//Filter the items by the last modified date and status
StockItem stockItemsToBeFound = new StockItem
{
 LastModified = new DateTimeSearch
 {
 Value = DateTime.Now.AddMonths(-1),
 Condition = DateTimeCondition.IsGreaterThan
 },
 ItemStatus = new StringSearch { Value = "Active" }
};

//Get the list of stock items
Entity[] stockItems = soapClient.GetList(stockItemsToBeFound);

Usage Notes

• To specify the fields whose values you need to obtain for each entity, you use the ReturnBehavior
property of the entity.

| Contract-Based SOAP API Reference | 202

• When the GetList() method is called, the system tries to optimize the retrieval of the records
and obtain all needed records in one request to the database. If the optimization fails, the system
obtains the records one by one, which may significantly increase the time of data retrieval.

Related Links

• ReturnBehavior Property (Contract Version 2)

Put() Method

You use the Put() method to create or modify a record on a data entry form of Acumatica ERP. For
example, by using the Put() method, you can create a customer record on the Customers (AR303000)
form.

You also use this method to retrieve data from an inquiry form. For example, by using the Put()
method, you can retrieve data from the Inventory Summary (IN401000) form.

Syntax

public Entity Put(Entity entity)

Parameter

• entity: The entity that specifies the values of the fields of the created record, or the entity that
specifies the record that should be modified and the values of the fields that should be modified in
this record.

If you use this method to create or modify a record on a data entry form, the entity
must specify only one record in Acumatica ERP. If the entity specifies more than one
record or no records, an error is returned during the execution of the method.

Return Value

The method returns the Entity object that corresponds to the created or modified record.

Example 1: Creating a Record

The following example creates a customer record with the specified field values in Acumatica ERP.

//Specify the values of a new customer record
Customer customerToBeCreated = new Customer
{
 CustomerID = new StringValue { Value = "JOHNGOOD" },
 CustomerName = new StringValue { Value = John Good" },
 MainContact = new Contact
 {
 Email = new StringValue { Value = "demo@gmail.com" },
 Address = new Address
 {
 AddressLine1 = new StringValue { Value = "43 Lake Washington Blvd NE" },
 AddressLine2 = new StringValue { Value = "Suite 100" },
 City = new StringValue { Value = "Kirkland" },
 State = new StringValue { Value = "WA" },

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=652929bc-9606-4056-aa6e-0c2d1147171b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2fd70552-e564-4e71-be30-e63b9415baa2

| Contract-Based SOAP API Reference | 203

 PostalCode = new StringValue { Value = "98033" }
 }
 }
};

//Create a customer record with the specified values
Customer newCustomer = (Customer) soapClient.Put(customerToBeCreated);

Example 2: Updating a Record

The following example searches for the needed customer record in Acumatica ERP by the email address
and updates the record with the specified customer class value.

//Select the needed customer record and
//specify the values that should be updated
var customerToBeUpdated = new Customer
{
 MainContact = new Contact
 {
 //Search for the customer record by email address
 Email = new StringSearch { Value = "info@jevy-comp.con" }
 },
 CustomerClass = new StringValue { Value = "INTL" };
};

//Update the customer record with the specified values
var updCustomer = (Customer)soapClient.Put(customerToBeUpdated);

Example 3: Retrieving Data from an Inquiry Form

The following example retrieves the values of all elements available for a stock item from the Inventory
Summary (IN401000) inquiry form.

//Filter details by warehouse
InventorySummaryInquiry stockItemsToBeFound =
new InventorySummaryInquiry
{
 InventoryID = new StringValue { Value = "AALEGO500" },
 WarehouseID = new StringValue { Value = "MAIN" }
};

//Retrieve the list of stock items from the inquiry
InventorySummaryInquiry stockItems =
 (InventorySummaryInquiry)soapClient.Put(stockItemsToBeFound);

foreach (InventorySummaryRow stockItem in stockItems.Results)
{
 //Do something with the results
 ...
}

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2fd70552-e564-4e71-be30-e63b9415baa2
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2fd70552-e564-4e71-be30-e63b9415baa2

| Contract-Based SOAP API Reference | 204

Usage Notes

When the Acumatica ERP web services receive a Put request that contains an entity with at least
one Search object, Acumatica ERP tries to search for a record by using the specified search value or
values, and does one of the following:

•
If the record that satisfies the specified conditions has been found, Acumatica ERP updates the
fields of the record that are specified by using the Value objects.

•
If no record has been found that satisfies the specified conditions, a new record is inserted. Note
that the values that were specified with the Search objects are inserted into the created record in
the same way as the values specified with the Value objects are inserted.

•
If multiple records have been found, Acumatica ERP returns an error.

For the key fields of a record that are passed in the Put request as Value objects, the service converts
the corresponding Value objects to Search objects.

When the Acumatica ERP web services receive a Put request that contains only Value, Return, and
Skip objects without key fields specified, Acumatica ERP adds a new record with the specified values.

The workflow of a Put request is illustrated in the following diagram.

| Contract-Based SOAP API Reference | 205

Figure: Put() workflow

| Contract-Based SOAP API Reference | 206

Delete() Method

You use the Delete() method to delete a record from Acumatica ERP.

Syntax

public void Delete(Entity entity)

Parameter

• entity: The entity that specifies the record that should be deleted.

The entity must specify only one record in Acumatica ERP. If the entity specifies more
than one record or no records, an error is returned during the execution of the method.

Usage Notes

The Delete() method is used to delete only the records that correspond to top-level entities. If
you need to delete a detail line of a record, you should set the Delete property of the entity that
corresponds to the detail line to true and pass the top-level entity that contains this entity to
Acumatica ERP by using the Put() method.

Invoke() Method

You use the Invoke() method to invoke an action on a record in Acumatica ERP (for example, to
perform the release action on a document).

Syntax

public InvokeResult Invoke(Entity entity, Action action)

Parameters

• entity: The entity that specifies the record on which the action should be invoked.

The entity must specify only one record in Acumatica ERP. If the entity specifies more
than one record or no records, an error is returned during method execution.

• action: The action that should be invoked on the record.

Return Value

The method returns an InvokeResult object, which you should use to monitor the status of the long-
running operation by using the GetProcessStatus() method.

Example

The following code releases a payment.

//Find the payment that should be released

| Contract-Based SOAP API Reference | 207

Payment soPaymentToBeReleased = new Payment
{
 Type = new StringSearch { Value = "Payment" },
 ReferenceNbr = new StringSearch { Value = "000001" }
};
Payment payment = (Payment)soapClient.Get(soPaymentToBeReleased);

//Release the payment
InvokeResult invokeResult = soapClient.Invoke(payment, new ReleasePayment());

//Monitor the status of the release operation
...

Related Links

• GetProcessStatus() Method

GetProcessStatus() Method

You use the GetProcessStatus() method to monitor the status of a long-running operation (such as
the release or confirmation operation) that you invoked by using the Invoke() method.

Syntax

public ProcessResult GetProcessStatus(InvokeResult invokeResult)

Parameter

• invokeResult: An InvokeResult object that was returned by the Invoke() method.

Return Value

The method returns a ProcessResult object. You should use the Status property of this object to get
the status of the processing operation. When the status of the operation is Completed, you can get the
result of processing, which is identified by the EntityID property of a ProcessResult object.

If a synchronous operation has been invoked by the Invoke() method and the operation has been
completed successfully, the GetProcessStatus() method returns the Completed status.

Example

The following code monitors the status of the payment release processing.

...
//Release payment
InvokeResult invokeResult = soapClient.Invoke(payment, new ReleasePayment());

//Monitor the status of the process
ProcessResult processResult = soapClient.GetProcessStatus(invokeResult);
while (processResult.Status == ProcessStatus.InProcess)
{
 Thread.Sleep(1000); //pause for 1 second
 processResult = soapClient.GetProcessStatus(invokeResult);
}

| Contract-Based SOAP API Reference | 208

if (processResult.Status == ProcessStatus.Completed)
{
 //Get the released payment
 payment = (Payment)soapClient.Get(
 new Payment { ID = processResult.EntityId });
}

Related Links

• Invoke() Method

GetFiles() Method

You use the GetFiles() method to get the files that are attached to a record.

Syntax

public File[] GetFiles(Entity entity)

Parameter

• entity: The entity that specifies the record in Acumatica ERP to which the files are attached.

Return Value

The method returns an array of web service File objects that contain the properties for accessing the
contents and names of the files.

Example

The following example retrieves the files attached to a stock item record.

//Filter the items by inventory ID
StockItem stockItemToBeFound = new StockItem
{
 InventoryID = new StringSearch { Value = "AAMACHINE1" }
};

//Get the stock item record
StockItem stockItem = (StockItem) soapClient.Get(stockItemToBeFound);

//Get the files that are attached to the stock item
if (stockItem != null && stockItem.ImageUrl != null)
{
 //Get the attached files
 File[] files = soapClient.GetFiles(stockItem);
 ...
};

PutFiles() Method

You use the PutFiles() method to attach files to a record in Acumatica ERP.

| Contract-Based SOAP API Reference | 209

Syntax

public void PutFiles(Entity entity, File[] files)

Parameters

• entity: The entity that specifies the record to which the files should be attached.

• files: An array of web service File objects that specify the files to be attached.

Example

The following code attaches a file to a stock item record.

//Find the needed stock item
StockItem stockItemToBeFound = new StockItem
{
 InventoryID = new StringSearch { Value = "AALEGO500" },
};
StockItem stockItem = (StockItem)soapClient.Get(stockItemToBeFound);

//Read the file data
byte[] filedata;
using (FileStream file =
System.IO.File.Open("D:\\T2MCRO.jpg", FileMode.Open))
{
 filedata = new byte[file.Length];
 file.Read(filedata, 0, filedata.Length);
}

//Add the file to the stock item record
Default.File[] stockItemFiles = new[]
{
 //Default is the name of the service reference
 new Default.File
 {
 Name = fileName,
 Content = filedata
 }
};
soapClient.PutFiles(stockItem,stockItemFiles);

GetCustomFieldSchema() Method

You use the GetCustomFieldSchema() method to obtain the list of custom fields of an entity. You can
find out the field name and view name of the needed element by using this method.

| Contract-Based SOAP API Reference | 210

Custom fields can correspond to the following elements:

• The predefined elements on an Acumatica ERP form that are not included in the entity
definition

• The elements that were added to the Acumatica ERP form in a customization project

• The user-defined fields

Syntax

public Entity GetCustomFieldSchema(Entity entity)

Parameter

• entity: The entity for which the list of custom fields should be obtained.

Return Value

The method returns the Entity object, which contains the array of custom fields in its CustomFields
property.

Example

The following example retrieves the list of custom fields of the StockItem entity.

StockItem stockItem =
 (StockItem) soapClient.GetCustomFieldSchema(new StockItem());
CustomField[] customFields = stockItem.CustomFields;

Related Links

• Custom Fields

• CustomFields Property

Attributes Property

By using the Attributes property, you can view and edit the attributes of a record in Acumatica ERP.
Through this property, you work with an array of AttributeValue or AttributeDetail objects.

For the AttributeValue objects, to specify the value of an attribute, you specify the name of the
attribute in the AttributeID property, and the value of the attribute in the Value property.

For the AttributeDetail objects, to specify the value of an attribute, you specify the name of the
attribute in the Attribute property, and the value of the attribute in the Value property.

Syntax

public AttributeValue[] Attributes { set; get; }

| Contract-Based SOAP API Reference | 211

Example

The following code shows how to edit the attributes of a stock item record.

//Specify the values of a stock item record
StockItem stockItemToBeCreated = new StockItem
{
 InventoryID = new StringValue { Value = "BASESERV" },
 ItemClass = new StringValue { Value = "STOCKITEM" },
 Attributes = new []
 {
 //Specify the values of attributes of the item class (STOCKITEM)
 new AttributeValue
 {
 AttributeID = new StringValue { Value = "Operation System" },
 Value = new StringValue { Value = "Windows" }
 },
 new AttributeValue
 {
 AttributeID = new StringValue { Value = "Version Of Software" },
 Value = new StringValue { Value = "Server 2012 R2" }
 }
 }
};

//Create a stock item with the specified values
StockItem newStockItem = (StockItem)soapClient.Put(stockItemToBeCreated);

CustomFields Property

By using the CustomFields property, you can view and edit the values of the elements that are not
included in the entity definition. That is, custom fields can correspond to the following elements:

• The predefined elements on an Acumatica ERP form that are not included in the entity definition

• The elements that were added to the Acumatica ERP form in a customization project

• The user-defined fields

Through the CustomFields property, you work with an array of CustomField objects. This property is
exposed by the Entity class—that is, all entities of the web services API expose this property.

To get or set the value of an element that is not included in the entity definition, you should use the
CustomFields property of the entity that contains this element. To work with the needed element
in the CustomFields array, you specify the values of the fieldName and viewName properties of the
CustomField object of the needed type. In the viewName property, you specify the name of the data
view that contains the element, and in the fieldName property, you specify the internal name of the
element. For details on how to find out the field name and the name of the data view, see Custom
Fields.

For example, suppose that you added the Personal ID element to the Main Contact area of the
Customers (AR303000) form in a customization project. To work with this customization element
through the web services API, you should use the CustomFields property of the Contact entity,
which is available through the MainContact property of the Customer entity. The Personal ID

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=652929bc-9606-4056-aa6e-0c2d1147171b

| Contract-Based SOAP API Reference | 212

customization element has the String type and has the UsrPersonalID field name and belongs
to the DefContact data view. Therefore, to access this element, you should set the fieldName
property of the CustomStringField object to UsrPersonalID, and the viewName property of the
CustomStringField object to DefContact.

Syntax

public CustomField[] CustomFields { set; get; }

Example

Suppose that you added the Personal ID Type, Personal ID, and Credit Record Verified elements
to the Customers form in a customization project, as shown in the following screenshot.

Figure: Custom elements

The following code shows how to specify the values of these custom elements through the web
services API.

//Specify the values of a new customer record
Customer customerToBeCreated = new Customer
{
 CustomerID = new StringValue { Value = "TEDSMITH" },
 CustomerName = new StringValue { Value = "Ted Smith" },
 //Specify the values of the custom fields

 MainContact = new Contact
 {

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=652929bc-9606-4056-aa6e-0c2d1147171b

| Contract-Based SOAP API Reference | 213

 CustomFields = new[]
 {
 new CustomStringField
 {
 fieldName = "UsrPersonalIDType",
 viewName = "DefContact",
 Value = new StringValue { Value = "Passport" }
 },
 new CustomStringField
 {
 fieldName = "UsrPersonalID",
 viewName = "DefContact",
 Value = new StringValue { Value = customerPersonalID }
 },
 new CustomBooleanField
 {
 fieldName = "UsrCreditRecordVerified",
 viewName = "DefContact",
 Value = new BooleanValue { Value = true }
 }
 }
 }
};

//Create a customer record with the specified values
Customer newCustomer = (Customer)soapClient.Put(customerToBeCreated);

Usage Notes
To work with elements of an object that was added in a customization project or with a custom
Acumatica ERP form, you have to create a custom endpoint for the needed form. You can create a
custom endpoint on the Web Service Endpoints (SM207060) form. For details on creation of a custom
endpoint, see To Create a Custom Endpoint and To Extend an Existing Endpoint.

Related Links

• Custom Fields

• GetCustomFieldSchema() Method

ReturnBehavior Property (Contract Version 3)

This topic describes the ReturnBehavior property that is available in Version 3 of the
system contract.

By using the ReturnBehavior property, you can specify the fields of the entity whose values should be
returned from the request to the service that is performed by the Get(), GetList(), or Put() method.
This property is exposed by the Entity class—that is, all entities of the web services API expose this
property.

For each entity, you can specify one of the following options, which determine the fields for which
values should be returned:

• None: Values should not be returned for any fields of the entity. You can use this option for detail
entities and linked entities, but not for top-level entities.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c620452-c947-4bd6-a9eb-2a8fc04226be

| Contract-Based SOAP API Reference | 214

• OnlySystem: Values should be returned for only the system fields (that is, the fields of the Entity
class, such as ID, RowNumber, and Note). You may need to obtain only the values of the system
fields, for example, if you want to delete the entity.

• OnlySpecified: Values should be returned for only the specified fields of the entity and the
system fields. You can specify the values to be returned by using the Return classes of the needed
value type, such as StringReturn. The values of the fields that are specified by using the Value
or Search classes of the corresponding value type, such as StringValue and StringSearch, are
returned automatically.

• Default: Values should be returned for only the fields of the entity that are defined in the entity
itself (without the fields of the linked and detail entities defined within the entity). This option is
used by default.

• All: Values should be returned for all fields of the entity that are defined in the contract (including
the fields of the linked and detail entities defined within the entity). No values of the custom fields
(the Acumatica ERP fields that are not defined in the contract or the fields that are defined in a
customization project) are returned. You can specify the values to be skipped by using the Skip
classes of the needed value type, such as StringSkip.

In the sections below, you can find examples of how to specify the fields whose values should be
returned.

Syntax

public ReturnBehavior ReturnBehavior { set; get; }

Example: Obtaining All Fields

The following example shows how to obtain the values of all fields of all stock item records in the
system.

StockItem stockItemsToBeFound = new StockItem
{
 ReturnBehavior = ReturnBehavior.All
};

//Get the list of stock items with the values of all fields
//that are defined in the contract
Entity[] stockItems = soapClient.GetList(stockItemsToBeFound);

Example: Obtaining Only the Fields of the Entity Itself Without Linked and
Detail Fields

In the following example, only the fields of the top-level StockItem entity are retrieved from the
system.

//You can omit the setting of the ReturnBehavior property to ReturnBehavior.Default
//because this option is used by default
StockItem stockItemsToBeFound = new StockItem();

//Get the list of stock items with the values of the fields
//of the StockItem entity itself (without the fields of the detail or linked entities)
Entity[] stockItems = soapClient.GetList(stockItemsToBeFound);

| Contract-Based SOAP API Reference | 215

Example: Obtaining Only Specified Fields

The following example shows how to obtain the values of the InventoryID field, the ItemStatus field,
and all WarehouseDetail fields of all stock item records in the system.

StockItem stockItemsToBeFound = new StockItem
{
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringReturn(),
 ItemStatus = new StringSearch { Value = "Active" },
 WarehouseDetails = new StockItemWarehouseDetail[]
 {
 new StockItemWarehouseDetail {ReturnBehavior = ReturnBehavior.All}
 },
};

//Get the list of stock items with the values of the specified fields
Entity[] stockItems = soapClient.GetList(stockItemsToBeFound);

Example: Obtaining All Fields Except the Specified Ones

The following example shows how to obtain the values of all fields of all stock item records in the
system except the LastModified field and all WarehouseDetail fields.

StockItem stockItemsToBeFound = new StockItem
{
 ReturnBehavior = ReturnBehavior.All,
 LastModified = new DateTimeSkip(),
 WarehouseDetails = new StockItemWarehouseDetail[]
 {
 new StockItemWarehouseDetail {ReturnBehavior = ReturnBehavior.None}
 },
};

//Get the list of stock items with the values of the specified fields
Entity[] stockItems = soapClient.GetList(stockItemsToBeFound);

Example: Obtaining Only System Fields

The following example shows how to obtain the values of only system fields of all stock item records in
the system.

StockItem stockItemToBeFound = new StockItem
{
 ReturnBehavior = ReturnBehavior.OnlySystem,
};

//Get the list of stock items with the values of system fields
Entity[] stockItems = soapClient.GetList(stockItemToBeFound);

| Contract-Based SOAP API Reference | 216

ReturnBehavior Property (Contract Version 2)

This topic describes the ReturnBehavior property that is available in Version 2 of the
system contract.

By using the ReturnBehavior property, you can specify the fields of the entity whose values should be
returned from the request to the service that is performed by the Get(), GetList(), or Put() method.
This property is exposed by the Entity class—that is, all entities of the web services API expose this
property.

For each entity, you can specify one of the following options, which determine the fields for which
values should be returned:

• None: Values should not be returned for any fields of the entity. You can use this option for detail
entities and linked entities, but not for top-level entities.

• OnlySystem: Values should be returned for only the system fields (that is, the fields of the Entity
class, such as ID, RowNumber, and Note). You may need to obtain only the values of the system
fields, for example, if you want to delete the entity.

• OnlySpecified: Values should be returned for only the specified fields of the entity and the
system fields. You can specify the values to be returned by using the Return classes of the needed
value type, such as StringReturn. The values of the fields that are specified by using the Value
or Search classes of the corresponding value type, such as StringValue and StringSearch, are
returned automatically.

• All: Values should be returned for all fields of the entity that are defined in the contract. No values
of the custom fields (the Acumatica ERP fields that are not defined in the contract or the fields
that are added in a customization project and are not included in the contract) are returned. You
can specify the values to be skipped by using the Skip classes of the needed value type, such as
StringSkip. This option is used by default.

In the sections below, you can find examples of how to specify the fields whose values should be
returned.

Syntax

public ReturnBehavior ReturnBehavior { set; get; }

Example: Obtaining All Fields

The following example shows how to obtain the values of all fields of all stock item records in the
system.

//You can omit the setting of the ReturnBehavior property to ReturnBehavior.All
//because this option is used by default
StockItem stockItemsToBeFound = new StockItem();

//Get the list of stock items with the values of all fields
//that are defined in the contract
Entity[] stockItems = soapClient.GetList(stockItemsToBeFound);

| Contract-Based SOAP API Reference | 217

Example: Obtaining Only Specified Fields

The following example shows how to obtain the values of the InventoryID field, the ItemStatus field,
and all WarehouseDetail fields of all stock item records in the system.

StockItem stockItemsToBeFound = new StockItem
{
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringReturn(),
 ItemStatus = new StringSearch { Value = "Active" },
 WarehouseDetails = new StockItemWarehouseDetail[]
 {
 new StockItemWarehouseDetail {ReturnBehavior = ReturnBehavior.All}
 },
};

//Get the list of stock items with the values of the specified fields
Entity[] stockItems = soapClient.GetList(stockItemsToBeFound);

Example: Obtaining All Fields Except the Specified Ones

The following example shows how to obtain the values of all fields of all stock item records in the
system except the LastModified field and all WarehouseDetail fields.

StockItem stockItemsToBeFound = new StockItem
{
 ReturnBehavior = ReturnBehavior.All,
 LastModified = new DateTimeSkip(),
 WarehouseDetails = new StockItemWarehouseDetail[]
 {
 new StockItemWarehouseDetail {ReturnBehavior = ReturnBehavior.None}
 },
};

//Get the list of stock items with the values of the specified fields
Entity[] stockItems = soapClient.GetList(stockItemsToBeFound);

Example: Obtaining Only System Fields

The following example shows how to obtain the values of only system fields of all stock item records in
the system.

StockItem stockItemToBeFound = new StockItem
{
 ReturnBehavior = ReturnBehavior.OnlySystem,
};

//Get the list of stock items with the values of system fields
Entity[] stockItems = soapClient.GetList(stockItemToBeFound);

| Screen-Based SOAP API Reference | 218

Screen-Based SOAP API Reference
In this chapter, you will find the reference information for the main methods of the screen-based web
services API; these methods are used to transfer data to and from Acumatica ERP. This chapter covers
the following objects, and the following methods, which are exposed by the Screen class:

• Login() Method

• Logout() Method

• SetLocaleName() Method

• SetBusinessDate() Method

• GetScenario() Method

• GetSchema() Method

• SetSchema() Method

• Export() Method

• Submit() Method

• Import() Method

• Clear() Method

• GetProcessStatus() Method

Login() Method

You use the Login() method to make the client application sign in to Acumatica ERP.

Syntax

public LoginResult Login(string name, string password)

Parameters

• name: The username that the application should use to sign in to Acumatica ERP, such as "admin".

To sign in to a specific Acumatica ERP tenant, specify the name parameter as follows:
UserName@TenantName, where you should specify the username instead of UserName and the
tenant name instead of TenantName. For example, if you sign in to the tenant with the name
Dollar as the user with the name admin, you should specify the parameter as admin@Dollar.
You can view the name that should be used for the tenant in the Login Name box of the Tenants
(SM203520) form.

To sign in to a certain branch in the tenant, specify the parameter as follows:
UserName@TenantName:BranchName, where you should specify the username instead of UserName,
the tenant name instead of TenantName, and the branch ID instead of BranchName. You can view
the ID of the branch in the Branch ID box of the Branches (CS102000) form. For example, if you
sign in to the East branch of the Dollar tenant as the user with the name admin, you should specify
the parameter as admin@Dollar:East.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=3f8ba9f5-9e04-4568-a93e-862ba7b92c2b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b97ab72d-4ab4-4f02-b69c-f7f61b316ced

| Screen-Based SOAP API Reference | 219

• password: The password for the username, such as "123".

Return Value

The method returns the LoginResult object, which contains the description of errors that occurred
during signing in, if any.

Example

The following code signs in to Acumatica ERP by using the parameters that are specified in the
application settings.

Screen context = new Screen();
context.CookieContainer = new System.Net.CookieContainer();
context.Url = "https://localhost/WebServiceAPITest/Soap/MYSTORE.asmx";
context.Login("admin@MyTenant:MYSTORE", "123");

Usage Notes

Before you sign in to Acumatica ERP by using the Login() method, do the following:

1. Initialize the CookieContainer property of the object with a new
System.Net.CookieContainer(). The CookieContainer property is a standard property of
an object of the HttpWebClientProtocol system type. (The Screen class is derived from the
HttpWebClientProtocol class.) This property is used to maintain the session state for a client.

2. Specify the URL of the web service in the URL property of the object. This is the same URL that you
specify when you add a web reference to the Acumatica ERP web service. You can change the URL
of the service dynamically in your application if you need to switch between multiple Acumatica
ERP web services.

For each call of the Login() method, you must call the Logout() method after you finish your work
with Acumatica ERP to close the session. Therefore, when you are working with the web services API,
we recommend that you use the pattern that is shown in the following code.

using
(
 //Connect to the web services and log in to Acumatica ERP
 Screen context = new Screen();
 ...
)
{
 try
 {
 //Import, export, or submit data
 ...
 }
 finally
 {
 //Log out from Acumatica ERP
 context.Logout();
 }
}

| Screen-Based SOAP API Reference | 220

You should take into account Acumatica ERP license API limits when using the Login() method. For
details, see License Restrictions for API Users.

Logout() Method

You use the Logout() method to make the client application sign out from Acumatica ERP.

Syntax

public void Logout()

Usage Notes

For each call of the Login() method, you must call the Logout() method after you finish your work
with Acumatica ERP to close the session. Therefore, when you are working with the web services API,
we recommend that you use the pattern that is shown in the following code.

using
(
 //Connect to the web services and sign in to Acumatica ERP
 Screen context = new Screen();
 ...
)
{
 try
 {
 //Import, export, or submit data
 ...
 }
 finally
 {
 //Sign out from Acumatica ERP
 context.Logout();
 }
}

SetLocaleName() Method

You use the SetLocaleName() method to specify the locale for Acumatica ERP to correctly recognize
the format of dates, numbers, and other country-specific data that is passed by using the web services
API. By default, Acumatica ERP uses the invariant locale, which is similar to the English (United States)
locale.

Syntax

public void SetLocaleName(string localeName)

Parameter

• localeName: The locale that should be used in Acumatica ERP. You should specify the locale in the
System.Globalization.CultureInfo format converted to string, such as "EN-US".

| Screen-Based SOAP API Reference | 221

Example

The following code shows how to specify the appropriate locale with the SetLocaleName() method of
the Screen object.

...
using System.Threading;
...
Screen context = new Screen();
context.SetLocaleName(Thread.CurrentThread.CurrentCulture.ToString());

SetBusinessDate() Method

You use the SetBusinessDate() method to specify the business date in Acumatica ERP. You can set
the business date to any date to make the system insert this date into the date fields by default. The
business date is inserted into any new document that you create and is used in the default selection
parameters that appear on processing and inquiry screens.

Syntax

public void SetBusinessDate(System.DateTime businessDate)

Parameter

• businessDate: The business date that should be used in Acumatica ERP.

Usage Notes

The business date resets to the current date of your computer after each login. Therefore, if you need
to specify a business date in your application, you should call the SetBusinessDate() method after
each client application login.

GetScenario() Method

You use the GetScenario() method to retrieve the list of commands of an integration scenario that is
configured in the system.

Syntax

public Command[] GetScenario(string scenario)

Parameter

• scenario: The name of the import or export scenario for which the list of commands should be
retrieved.

Return Value

The method returns the list of commands of the specified integration scenario.

| Screen-Based SOAP API Reference | 222

GetSchema() Method

You use the GetSchema() method of the Screen object to get the description of the structure (schema)
of a form. This method is specific for each Acumatica ERP form, and you should use the method with
the ID of the needed form in the prefix of the method name.

To prevent application failures due to UI changes in Acumatica ERP, you can use the
GetSchema() method of the screen-based API wrapper instead of the GetSchema() method
of the Screen object. For more information on the screen-based API wrapper, see Screen-
Based API Wrapper.

Syntax

public Content GetSchema()

Return Value

The method returns the schema of the form as the corresponding Content object, which is specific for
each form.

Example

To get the schema of the Stock Items (IN202500) form, you should call the IN202500GetSchema()
method of the Screen object. You will receive the result as a IN202500Content object, as the following
code shows.

Screen context = new Screen();
...
IN202500Content stockItemsSchema = context.IN202500GetSchema();

SetSchema() Method

You use the SetSchema() method of the Screen object to change the description of the structure
(schema) of a form to the one specified in the method. This method is useful when you need to work
with the description of the form that was used in previous versions of Acumatica ERP. This method is
specific for each Acumatica ERP form, and you should use the method with the ID of the needed form
in the prefix of the method name.

Syntax

public void SetSchema(Content schema)

Parameter

• schema: The schema of an Acumatica ERP form.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e

| Screen-Based SOAP API Reference | 223

Export() Method

You use the proper Export() method of a Screen object to export data from Acumatica ERP. You
select the needed Export() method by using in the name of the method the prefix that contains the ID
of the Acumatica ERP form from which the method exports data.

Syntax

public string[][] Export(
 Command[] commands,
 Filter[] filters,
 int topCount,
 bool includeHeaders,
 bool breakOnError
)

Parameters

• commands: In this parameter, you specify the UI elements of the Acumatica ERP form whose values
you need to export. In the array of commands that you pass to the commands parameter, you can
also use the EveryValue service command, which makes the system export all records of the
specific type.

• filters: In this parameter, you specify any restrictions on the data to be exported. For example,
you can configure the system to export only the records that have a particular status.

• topCount: In this parameter, you can restrict the number of records to be exported. If this
parameter is set to 0, the system exports all records that are specified by the commands and
filters parameters of the Export() method.

• includeHeaders: In this parameter, you specify whether the result of the export should include
column headers. If this parameter is set to true, the result of the export includes the names of
exported elements in the first row of the exported data.

• breakOnError: In this parameter, you specify whether the system should stop the export if an
error occurs during this process. If this parameter is set to true, the system stops exporting data
when the first error occurs during the export.

Return Value

The result of the data export is a two-dimensional string array, which represents the exported data
in a table format. Thus, if an exported record contains detail lines, the values of the detail lines are
translated to multiple rows of this table. The number of rows is equal to the number of detail lines of
the source record. The table rows that belong to one record have the same values of the elements of
the summary area specified.

For example, suppose that on the Invoices (SO303000) form, an invoice has three detail lines. If you
export this invoice with detail lines, the data prepared for export will include three records for this
invoice—one record for each detail line. These records will include identical values of the elements in
the summary area of the invoice, such as the type and reference number, and different values of the
detail line elements.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a

| Screen-Based SOAP API Reference | 224

Submit() Method

You use the proper Submit() method of a Screen object to submit data to Acumatica ERP. You select
the needed Submit() method by using in the name of the method the prefix that contains the ID of
the Acumatica ERP form with which the method works.

Syntax

public Content[] Submit(Command[] commands)

Parameter

• commands: You use this parameter to specify the data that you are going to submit. In this
parameter, you pass to the web service an array of Command objects in which you can specify
commands that do the following:

• Set the values of elements on the form by using Value commands.

• Click buttons on the form (for example, the Save button) by using Action commands.

• Get the result of data processing by using Field commands.

Return value

The result of processing of the data submitted by using the Submit() method is returned as a Content
object specific to the form to which the data has been submitted. This object contains the values of the
elements that you specified by using Field commands in the array of Command objects, which you pass
to the Submit() method. The values of the elements that were not specified by using Field commands
are null.

If you want only to submit data to an Acumatica ERP form and do not need to obtain any values of
elements after submitting, do not specify any Field commands in the array of the Command object that
you pass to a Submit() method. In this case, the Submit() method does not return any value.

Example 1: Submitting Data and Obtaining the Result of Processing

Suppose that you want to submit a customer record to the Customers (AR303000) form and obtain as a
result of processing the values of the Customer Name and Customer Class elements. You pass the
list of commands, which includes Field commands for the CustomerName and CustomerClass fields, to
the AR303000Submit() method, as the following code shows. In this example, the AR303000Submit()
method returns a AR303000Content object that has non-null values of the CustomerName and
CustomerClass fields. The values of the other elements of the returned AR303000Content object are
null.

AR303000Content custSchema = context.AR303000GetSchema();
var commands = new Command[]
{
 ...
 custSchema.Actions.Save,
 custSchema.CustomerSummary.CustomerName,
 custSchema.GeneralInfoFinancialSettings.CustomerClass
};
AR303000Content customer = context.AR303000Submit(commands)[0];

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=652929bc-9606-4056-aa6e-0c2d1147171b

| Screen-Based SOAP API Reference | 225

Example 2: Submitting Data without Obtaining the Result of Processing

Suppose that you want to create a customer record on the Customers form and do not need to get the
values of any element on the form after the customer record is created. You pass the list of commands,
which sets the needed values and saves the changes on the form (the list of commands does not
include any Field commands), to the AR303000Submit() method, as the following code shows. In this
example, the AR303000Submit() method does not return any value.

AR303000Content custSchema = context.AR303000GetSchema();
var commands = new Command[]
{
 new Value
 {
 ...
 },
 custSchema.Actions.Save
};
context.AR303000Submit(commands);

Import() Method

To import data to Acumatica ERP by using the web services API, you should use the proper Import()
method of a Screen object. You select the needed Import() method by using in the name of the
method a prefix that contains the ID of the Acumatica ERP form to which the method imports data.

Syntax

public ImportResults[] Import(
 Command[] commands,
 Filter[] filters,
 string[][] data,
 bool includedHeaders,
 bool breakOnError,
 bool breakOnIncorrectTarget
)

Parameters

• commands: In this parameter, you specify the UI elements of the Acumatica ERP form to which you
need to import data by using Field commands. You can click buttons on the form (for example,
the Save button) by using Action commands.

• filters: In this parameter, you specify any restrictions on the data to be imported. For example,
you can configure the system to import only the records that have the CUST prefix in the customer
ID field.

• data: In this parameter, you specify the data that should be imported in a two-dimensional string
array. Each row of the array should contain the values of the fields in the order that you specified
in the commands parameter.

• includeHeaders: In this parameter, you specify whether the imported data include column
headers. If this parameter is set to true, this signals to the system that the data, which is
imported, includes the names of the imported elements in the first row.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=652929bc-9606-4056-aa6e-0c2d1147171b

| Screen-Based SOAP API Reference | 226

• breakOnError: In this parameter, you specify whether the system should stop the data import if
an error occurs during this process. If this parameter is set to true, the system stops importing
data when the first error occurs during the import.

• breakOnIncorrectTarget: In this parameter, you specify whether the system should stop the
data import if the record does not meet the condition specified for the imported record. If this
parameter is set to true, the system stops processing records and displays an error.

Return Value

The result of the processing of the data imported by using the Import() method is returned as a
ImportResults object specific to the form to which the data has been imported. This object contains
the result of the processing.

Clear() Method

You use the Clear() method to clear all changes on the form. The method works in the same way
as the Cancel button on the toolbar of an Acumatica ERP form does. This method is specific to the
particular Acumatica ERP form, and you should use the method with the ID of the needed form in the
prefix of the method name.

Syntax

public void Clear()

GetProcessStatus() Method

You use the GetProcessStatus() method to monitor the status of a long-running operation (such as
the release or confirmation operation).

Syntax

public ProcessResult GetProcessStatus()

Return Value

The method returns a ProcessResult object. You should use the Status property of this object to get
the status of the processing operation. When the status of the operation is Completed, you can get the
result of processing.

| Contract-Based API Examples | 227

Contract-Based API Examples
In this chapter, you can find code examples that show how to implement the integration of Acumatica
ERP with external systems through the contract-based REST and SOAP API. Each example includes a
short description, a user scenario that you can implement by using this example, and code snippet that
use REST or SOAP API to implement the scenario. You can reuse these examples in your application.

You can find the REST examples in the Help-and-Training-Examples repository on GitHub. To test the
examples, you do the following:

1. Clone the 2020R1 branch of the repository or download its contents.

2. Deploy a new Acumatica ERP instance with the U100 dataset. For details on deploying an instance,
see To Deploy an Acumatica ERP Instance in the Installation Guide.

3. Find the examples in the IntegrationDevelopmentGuide.postman_collection.json file (which is
a Postman collection) of the IntegrationDevelopment\Help folder in the branch.

4. Specify the URL of the instance in the BaseURL variable of the collection.

In This Chapter

• Inventory and Order Management (REST API Examples)

• Project Accounting (REST API Examples)

• Customer Relationship Management (REST API Example)

• POS Systems (SOAP API Examples)

Inventory and Order Management (REST API
Examples)

You can use contract-based REST APIs for the integration of inventory and order management in
Acumatica ERP with external systems. For details on inventory and order management, see Inventory
Management and Order Management.

The following topics present examples of the integration of inventory and order management in
Acumatica ERP with external systems:

• Creation of a Bill for Particular Lines of a Purchase Order or Receipt

• Creation of a Purchase Receipts and Purchase Returns

• Creation of a Sales Order with Payments

https://github.com/Acumatica/Help-and-Training-Examples
https://github.com/Acumatica/Help-and-Training-Examples/tree/2020R1
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b18ad378-0a8c-44f1-a14c-6b4f9c6271e4
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=1873e99d-a763-43ad-b6c9-dbdf26867637
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=1873e99d-a763-43ad-b6c9-dbdf26867637
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f15b4416-7670-4988-954e-7460a8051671

| Contract-Based API Examples | 228

Creation of a Bill for Particular Lines of a Purchase Order or
Receipt

This example has been tested for Acumatica ERP 2020 R1 and may require code
modifications for other versions of Acumatica ERP.

Through the contract-based REST and SOAP APIs, external systems can create bills for particular lines
of purchase orders and purchase receipts. For details about the processing of inventory purchases, see
Standard Inventory Purchases: General Information.

To create an AP bill for particular lines of a purchase order or receipt, you need to specify the
line number in the request by using the POLine or POReceiptLine property, respectively, of the
BillDetail detail entity of the Bill entity.

If you want to add all lines of a purchase order or receipt to an AP bill, in the BillDetail
detail entity of the Bill entity, you need to specify only the order type and number for a
purchase order or only the receipt number for a purchase receipt.

User Scenario

Through an external system, a purchasing manager of the company needs to create an accounts
payable bill in Acumatica ERP for particular lines of a purchase order or purchase receipt.

Testing of the Examples

To test the code below, you do the following to configure your client application and the Acumatica ERP
instance to be used:

• Deploy a new Acumatica ERP instance with the U100 dataset. For details on deploying an instance,
see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, make sure the Inventory and Order Management
feature is enabled.

• To sign in to the instance in the client application, use the tenant name (which you specified when
you created the instance) and the HEADOFFICE branch.

Examples of REST API Requests
You can use the following examples of HTTP requests to create an AP bill for particular lines of a
purchase order or purchase receipt:

In the request examples below, <Acumatica ERP instance URL> is the URL of the
Acumatica ERP instance (such as https://my.acumatica.com/MyInstance). You can omit
the instance name in the URL (such as https://my.acumatica.com) if the instance is
installed in the root of the website.

• Create an AP bill for a line of a purchase order

PUT ?$select=ReferenceNbr,Details/POOrderNbr,Details/POOrderNbr,
 Details/InventoryID,Details/Qty&$expand=Details HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/Bill
Accept: application/json

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=884c10ea-eb7c-4afd-87f1-7105bb0f374c
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b18ad378-0a8c-44f1-a14c-6b4f9c6271e4
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c1555e43-1bc5-4f6f-ba9d-b323f94d8a6b

| Contract-Based API Examples | 229

Content-Type: application/json

{
 "Vendor": {
 "value": "PRINTICO"
 },
 "VendorRef": {
 "value": "123"
 },
 "Description": {
 "value": "Bill for particular lines of a purchase order"
 },
 "Details": [
 {
 "POOrderType": {
 "value": "Normal"
 },
 "POOrderNbr": {
 "value": "000001"
 },
 "POLine": {
 "value": 1
 },
 "Qty":
 {
 "value": 5
 }
 }
]
}

• Create an AP bill for a line of a purchase receipt

PUT ?$select=ReferenceNbr,Details/POReceiptNbr,Details/InventoryID,
 Details/Qty&$expand=Details HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/Bill
Accept: application/json
Content-Type: application/json

{
 "Vendor": {
 "value": "OFFICEUP"
 },
 "VendorRef": {
 "value": "123"
 },
 "Description": {
 "value": "Bill for particular lines of a purchase receipt"
 },
 "Details": [
 {
 "POReceiptNbr": {
 "value": "000001"
 },
 "POReceiptLine": {

| Contract-Based API Examples | 230

 "value": 1
 }
 }
]
}

Make sure the financial periods are open for the year you create an AP bill for. If the financial
periods are not open, creation of the AP fill fails with an error, such as Post Period cannot be
empty. For details about how to open financial periods, see an example in Opening Financial
Periods: Process Activity.

Creation of a Purchase Receipts and Purchase Returns

The Default/20.200.001 endpoint allows you to perform the following scenarios:

• Creation of purchase receipts in non-base currency and specification of the cost-related values

• Specification of locations when creating purchase receipts

• Specification of the expiration dates for items in purchase receipts being created

• Creation of purchase returns on the basis of particular records of purchase receipts

• Creation of purchase returns on the basis of the whole purchase receipts

• Creation of purchase returns without specifying any information about original purchase receipts

In the request examples below, <Acumatica ERP instance URL> is the URL of the
Acumatica ERP instance (such as https://my.acumatica.com/MyInstance). You can omit
the instance name in the URL (such as https://my.acumatica.com) if the instance is
installed in the root of the website.

User Scenario

Through an e-commerce system, a purchasing manager of the company needs to create a purchase
receipt or purchase return in Acumatica ERP.

Testing of the Examples

To test the code below, you do the following to configure your client application and the Acumatica ERP
instance to be used:

• Deploy a new Acumatica ERP instance with the U100 dataset. For details on deploying an instance,
see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, make sure the Inventory and Order Management
feature is enabled.

• To sign in to the instance in the client application, use the tenant name (which you specified when
you created the instance) and the HEADOFFICE branch.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b5336beb-de46-4de4-8e58-d9a3961d4ac8
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b5336beb-de46-4de4-8e58-d9a3961d4ac8
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b18ad378-0a8c-44f1-a14c-6b4f9c6271e4
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c1555e43-1bc5-4f6f-ba9d-b323f94d8a6b

| Contract-Based API Examples | 231

Creation of a Purchase Return from a Purchase Receipt Record
You can use the following example of an HTTP request to create a purchase return using the purchase
receipt number (the POReceiptNbr field) and the purchase receipt line number (the POReceiptLineNbr
field). Thus, a specific line of a purchase receipt will be added to the purchase return being created.

PUT / HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/20.200.001/PurchaseReceipt
Accept: application/json
Content-Type: application/json

{
 "Type": {"value": "Return"},
 "VendorID": {"value": "ACITAISYST"},
 "CreateBill": {"value": "False"},
 "Description": {"value": "Test return (one PR line)"},
 "ProcessReturnWithOriginalCost": {"value": "True"},
 "Details": [
 {
 "POReceiptNbr": {"value": "PR001258"},
 "POReceiptLineNbr": {"value": "3"}
 }
]
}

Creation of a Purchase Return from a Purchase Receipt

You can use the following example of an HTTP request to create a purchase return using the purchase
receipt number (the POReceiptNbr field). Thus, the whole purchase receipt will be used in the
purchase return being created.

PUT / HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/20.200.001/PurchaseReceipt
Accept: application/json
Content-Type: application/json

{
 "Type": {"value": "Return"},
 "VendorID": {"value": "ACITAISYST"},
 "CreateBill": {"value": "False"},
 "Description": {"value": "Test return (all PR lines)"},
 "ProcessReturnWithOriginalCost": {"value": "True"},
 "Details": [
 {
 "POReceiptNbr": {"value": "PR001230"}
 }
]
}

Creation of a Purchase Return by Specifying Records

You can use the following example of an HTTP request to create a purchase return by specifying items
to return. In the request, no information about the original purchase receipts are specified.

| Contract-Based API Examples | 232

PUT / HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/20.200.001/PurchaseReceipt
Accept: application/json
Content-Type: application/json

{
 "Type": {"value": "Return"},
 "VendorID": {"value": "ACITAISYST"},
 "CreateBill": {"value": "False"},
 "Description": {"value": "Test return"},
 "ProcessReturnWithOriginalCost": {"value": "True"},
 "Details": [
 {
 "InventoryID": {"value": "CONBABY1"},
 "Warehouse": {"value": "VA-RETAIL"},
 "Location": {"value": "TABLE2"},
 "ReceiptQty": {"value": "7"},
 "ExtendedCost": {"value": "800"}
 }
]
}

Creation of a Purchase Receipt in Non-Base Currency and Specification of
Cost-Related Values

You can use the following example of an HTTP request to create a purchase receipt in non-base
currency using the CurrencyID and CurrencyRate fields and override cost-related values (such as
UnitCost or ExtendedCost).

PUT / HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/20.200.001/PurchaseReceipt
Accept: application/json
Content-Type: application/json

{
 "Type": {"value": "Receipt"},
 "VendorID": {"value": "ACITAISYST"},
 "CreateBill": {"value": "False"},
 "CurrencyID": {"value": "EUR"},
 "CurrencyRate": {"value": "1.2"},
 "Description": {"value": "Test receipt in non-base currency and with new cost fields"},
 "Details": [
 {
 "Branch": {"value": "PRODWHOLE "},
 "InventoryID": {"value": "FOODBREAD"},
 "ReceiptQty": {"value": 1.0},
 "ExpirationDate": {"value": "2020-04-25"},
 "UnitCost": {"value": "111"},
 "ExtendedCost": {"value": "333"}
 }
]
}

| Contract-Based API Examples | 233

Creation of a Purchase Receipt and Specification of the Goods Locations

You can use the following example of an HTTP request to create a purchase receipt and specify the
locations of particular goods.

PUT / HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/20.200.001/PurchaseReceipt
Accept: application/json
Content-Type: application/json

{
 "Type": {"value": "Receipt"},
 "VendorID": {"value": "AAVENDOR"},
 "CreateBill": {"value": "False"},
 "Description": {"value": "Test receipt with allocations"},
 "Details": [
 {
 "InventoryID": {"value": "CONBABY1"},
 "ReceiptQty": {"value": "11"},
 "Allocations": [
 {
 "Location": {"value": "DOCK"},
 "Qty": {"value": "5"}
 },
 {
 "Location": {"value": "R1S1"},
 "Qty": {"value": "6"}
 }
]
 },
 {
 "InventoryID": {"value": "CONBOTTLE1"},
 "ReceiptQty": {"value": "15"},
 "Allocations": [
 {
 "Location": {"value": "DROPSHIP"},
 "Qty": {"value": "7"}
 },
 {
 "Location": {"value": "RECEIVING"},
 "Qty": {"value": "8"}
 }
]
 }
]
}

Creation of a Purchase Receipt and Specification of the Goods Expiration
Dates

You can use the following example of an HTTP request to create a purchase receipt and specify the
expiration dates of particular goods.

PUT / HTTP/1.1

| Contract-Based API Examples | 234

Host: [<Acumatica ERP instance URL>]/entity/Default/20.200.001/PurchaseReceipt
Accept: application/json
Content-Type: application/json

{
 "Type": {"value": "Receipt"},
 "VendorID": {"value": "AAVENDOR"},
 "CreateBill": {"value": "False"},
 "Description": {"value": "Test receipt with Expiration Date in Allocations"},
 "Details": [
 {
 "Branch": {"value": "PRODWHOLE "},
 "InventoryID": {"value": "FOODBREAD"},
 "ReceiptQty": {"value": 3},
 "Allocations": [
 {
 "Qty": {"value": 1.0},
 "ExpirationDate": {"value": "2020-04-25"}
 },
 {
 "Qty": {"value": 2.0},
 "ExpirationDate": {"value": "2020-04-27"}
 }
]
 }
]
}

Creation of a Sales Order with Payments

Through the contract-based REST API, external systems can create sales orders with payments in a
single API call. For details about the creation of sales orders, see Reserving Payments for Sales Orders.

User Scenario

Through an e-commerce system, a sales manager of the company needs to create a sales order with
payments in Acumatica ERP.

Testing of the Examples

To test the code below, you do the following to configure your client application and the Acumatica ERP
instance to be used:

• Deploy a new Acumatica ERP instance with the U100 dataset. For details on deploying an instance,
see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, make sure the Inventory and Order Management
feature is enabled.

• To sign in to the instance in the client application, use the tenant name (which you specified when
you created the instance) and the HEADOFFICE branch.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d0d85b37-8484-4a1d-8ccf-dc02ea6b187c
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b18ad378-0a8c-44f1-a14c-6b4f9c6271e4
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c1555e43-1bc5-4f6f-ba9d-b323f94d8a6b

| Contract-Based API Examples | 235

In the request examples below, <Acumatica ERP instance URL> is the URL of the
Acumatica ERP instance (such as https://my.acumatica.com/MyInstance). You can omit
the instance name in the URL (such as https://my.acumatica.com) if the instance is
installed in the root of the website.

Creation of a Sales Order with an Internal Payment
You can use the following example of an HTTP request to create a sales order with an internal payment
in one call. In this example, the internal payment is a credit card payment.

The sales order is created with the payment in one transaction. If the payment cannot be
created, nor will the sales order be created.

PUT / HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/20.200.001/SalesOrder
Accept: application/json
Content-Type: application/json

{
 "CustomerID": {"value": "WIDGETCC"},
 "Date": {"value": "2020-05-10T00:00:00"},
 "Description": {"value": "Internal CC Payment"},
 "Details": [
 {
 "Branch": {"value": "PRODWHOLE"},
 "DiscountAmount": {"value": 10.00},
 "ExtendedPrice": {"value": 500.00},
 "FreeItem": {"value": false},
 "InventoryID": {"value": "AACOMPUT01"},
 "OrderQty": {"value": 1.00},
 "UnitPrice": {"value": 500.00},
 "UOM": {"value": "EA"},
 "WarehouseID": {"value": "WHOLESALE"}
 },
 {
 "Branch": {"value": "PRODWHOLE"},
 "DiscountAmount": {"value": 10.00},
 "ExtendedPrice": {"value": 500.00},
 "FreeItem": {"value": false},
 "InventoryID": {"value": "AALEGO500"},
 "OrderQty": {"value": 50.00},
 "UnitPrice": {"value": 50.00},
 "UOM": {"value": "EA"},
 "WarehouseID": {"value": "WHOLESALE"}
 }
],
 "Hold": {"value": false},
 "LocationID": {"value": "MAIN"},
 "OrderType": {"value": "SO"},
 "Payments": [
 {
 "ApplicationDate": {"value": "2020-08-11T00:00:00+03:00"},
 "AppliedToOrder": {"value": 480.00},

| Contract-Based API Examples | 236

 "CashAccount": {"value": "10600"},
 "PaymentAmount": {"value": 980.00},
 "PaymentMethod": {"value": "VISATOK"},
 "PaymentRef": {"value": "ABC CreditCard"}
 }
],
 "RequestedOn": {"value": "2020-05-10T00:00:00"}
}

Creation of a Sales Order with a Captured Internal Credit Card Payment

You can use the following example of an HTTP request to create in one call a sales order with an
internal credit card payment that will be captured. To capture a payment, you set the Capture
parameter of the payment to true. In the same way, you can specify that a payment must be
authorized, by setting the Authorize parameter of the payment to true. The operation you create by
this call is asynchronous.

PUT / HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/20.200.001/SalesOrder
Accept: application/json
Content-Type: application/json

{
 "CustomerID": {"value": "WIDGETCC"},
 "Date": {"value": "2020-05-10T00:00:00"},
 "Description": {"value": "Internal CC Payment (Capture)"},
 "Details": [
 {
 "Branch": {"value": "PRODWHOLE"},
 "DiscountAmount": {"value": 10.00},
 "ExtendedPrice": {"value": 500.00},
 "FreeItem": {"value": false},
 "InventoryID": {"value": "AACOMPUT01"},
 "OrderQty": {"value": 1.00},
 "UnitPrice": {"value": 500.00},
 "UOM": {"value": "EA"},
 "WarehouseID": {"value": "WHOLESALE"}
 },
 {
 "Branch": {"value": "PRODWHOLE"},
 "DiscountAmount": {"value": 10.00},
 "ExtendedPrice": {"value": 500.00},
 "FreeItem": {"value": false},
 "InventoryID": {"value": "AALEGO500"},
 "OrderQty": {"value": 50.00},
 "UnitPrice": {"value": 50.00},
 "UOM": {"value": "EA"},
 "WarehouseID": {"value": "WHOLESALE"}
 }
],
 "Hold": {"value": false},
 "LocationID": {"value": "MAIN"},
 "OrderType": {"value": "SO"},
 "Payments": [
 {

| Contract-Based API Examples | 237

 "ApplicationDate": {"value": "2020-08-11T00:00:00+03:00"},
 "AppliedToOrder": {"value": 480.00},
 "CashAccount": {"value": "10600"},
 "PaymentAmount": {"value": 980.00},
 "PaymentMethod": {"value": "VISATOK"},
 "PaymentRef": {"value": "ABC CreditCard"},
 "Capture": {"value": true}
 }
],
 "RequestedOn": {"value": "2020-05-10T00:00:00"}
}

Creation of a Sales Order with an External Credit Card Payment

You can use the following example of an HTTP request to create in one call a sales order with an
external credit card payment. You specify the external credit card payment parameters in the
CreditCardTransactionInfo structure.

PUT / HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/20.200.001/SalesOrder
Accept: application/json
Content-Type: application/json

{
 "CustomerID": {"value": "WIDGETCC"},
 "Date": {"value": "2020-05-10T00:00:00"},
 "Description": {"value": "External CC payment"},
 "Details": [
 {
 "Branch": {"value": "PRODWHOLE"},
 "DiscountAmount": {"value": 10.00},
 "ExtendedPrice": {"value": 500.00},
 "FreeItem": {"value": false},
 "InventoryID": {"value": "AACOMPUT01"},
 "OrderQty": {"value": 1.00},
 "UnitPrice": {"value": 500.00},
 "UOM": {"value": "EA"},
 "WarehouseID": {"value": "WHOLESALE"}
 },
 {
 "Branch": {"value": "PRODWHOLE"},
 "DiscountAmount": {"value": 10.00},
 "ExtendedPrice": {"value": 500.00},
 "FreeItem": {"value": false},
 "InventoryID": {"value": "AALEGO500"},
 "OrderQty": {"value": 50.00},
 "UnitPrice": {"value": 50.00},
 "UOM": {"value": "EA"},
 "WarehouseID": {"value": "WHOLESALE"}
 }
],
 "Hold": {"value": false},
 "LocationID": {"value": "MAIN"},
 "OrderType": {"value": "SO"},
 "Payments": [

| Contract-Based API Examples | 238

 {
 "ApplicationDate": {"value": "2020-08-11T00:00:00+03:00"},
 "AppliedToOrder": {"value": 480.00},
 "CashAccount": {"value": "10600"},
 "CreditCardTransactionInfo": [
 {
 "NeedValidation": {"value": true},
 "TranDate": {"value": "2020-08-11T00:00:00+03:00"},
 "TranNbr": {"value": "40050474170"},
 "TranType": {"value": "AUT"}
 }
],
 "PaymentAmount": {"value": 980.00},
 "PaymentMethod": {"value": "VISATOK"},
 "PaymentRef": {"value": "ABC CreditCard"}
 }
],
 "RequestedOn": {"value": "2020-05-10T00:00:00"}
}

Project Accounting (REST API Examples)

You can use contract-based REST APIs for the integration of Acumatica ERP projects with external
systems. For details on projects and project accounting, see Projects.

The following topics present examples of the integration of Acumatica ERP projects with external
systems:

• Creation of a Pro Forma Invoice

• Management of Account Groups

• Running of Project Billing

• Creation of a General Ledger Transaction with a Project Code That Does Not Produce a Project Transaction

• Time Entry

• Search for Time Entries by Date

Creation of a Pro Forma Invoice

This example has been tested for Acumatica ERP 2020 R1 and may require code
modifications for other versions of Acumatica ERP.

Through the contract-based REST and SOAP APIs, external systems can create pro forma invoices and
send them by email. For details about pro forma invoices, see Processing Pro Forma Invoices: General
Information.

For a pro forma to be created from the project, the project must have Customer, BillingRule,
BillingPeriod, and NextBillingDate specified, and must have the Active status. Because of data
validation in the project, NextBillingDate cannot be specified for a project with the On Hold status,
and you cannot change the customer in a project with the Active status. Therefore, these settings can
be specified only in multiple API calls, as shown in the code examples below.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=63993445-4475-4b24-a6c0-c27095a136dd
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c17cd234-2ac9-412e-a687-fa3ccdaa1e16
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c17cd234-2ac9-412e-a687-fa3ccdaa1e16

| Contract-Based API Examples | 239

User Scenario

A project manager of the company through an external system needs to create a pro forma invoice in
Acumatica ERP and send it to the client by email.

Preliminary Steps

A ProFormaInvoice entity cannot be created by using the PUT HTTP method; it can be created only
through the invocation of the RunProjectBilling action of the Project entity. Because email settings
are not mapped to any fields of the Project entity, you have to prepare a project template with the
specified email settings on the Project Templates (PM208000) form and then use this template for the
creation of the project through the API. The project template can also contain preconfigured project
tasks, as is the case with the template used in this example. For details about project templates, see
Project Templates and Common Tasks: General Information.

Testing of the Examples

To test the code below, you configure your client application and the Acumatica ERP instance to be
used as follows:

• Deploy a new Acumatica ERP instance with the U100 dataset. For details on deploying an instance,
see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, make sure the Projects feature is enabled.

• To sign in to the instance in the client application, use the tenant name (which you specified when
you created the instance) and the HEADOFFICE branch.

Examples of REST API Requests
You can use the following sequence of examples of HTTP requests to create a pro forma invoice and
send it by email through the contract-based REST API:

In the request examples below, <Acumatica ERP instance URL> is the URL of the
Acumatica ERP instance (such as https://my.acumatica.com/MyInstance). You can omit
the instance name in the URL (such as https://my.acumatica.com) if the instance is
installed in the root of the website.

1. Create a project from the project template and specify the Customer, BillingRule, and
BillingPeriod settings of the project.

PUT / HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/Project
Accept: application/json
Content-Type: application/json

{
 "ProjectID" : {"value" : "TESTPR3"},
 "ProjectTemplateID" : {"value" : "PROGRESS"},
 "Customer" : {"value" : "COFFEESHOP"},
 "BillingAndAllocationSettings" :
 {
 "BillingRule" : {"value" : "PROGRESS"},
 "BillingPeriod" : {"value" : "Month"},
 }

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=11e7c776-03fb-405d-a1f4-26700dd319fc
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d14cd111-2ac9-4e6e-a687-fa3ccdaa1e16
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b18ad378-0a8c-44f1-a14c-6b4f9c6271e4
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c1555e43-1bc5-4f6f-ba9d-b323f94d8a6b

| Contract-Based API Examples | 240

}

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

2. Make the project active.

PUT / HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/Project
Accept: application/json
Content-Type: application/json

{
 "ProjectID" : {"value" : "TESTPR3"},
 "Hold" : {"value" : false}
}

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

3. Specify NextBillingDate for the project.

PUT / HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/Project
Accept: application/json
Content-Type: application/json

{
 "ProjectID" : {"value" : "TESTPR3"},
 "BillingAndAllocationSettings" :
 {
 "NextBillingDate" : {"value" : "2019-08-15"},
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

4. Activate a project task.

PUT / HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/ProjectTask
Accept: application/json
Content-Type: application/json

{
 "ProjectTaskID" : {"value" : "PHASE1"},
 "ProjectID" : {"value" : "TESTPR3"},
 "Status" : {"value" : "Active"},
}

| Contract-Based API Examples | 241

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

5. Specify the progress of the project task.

PUT / HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/ProjectBudget
Accept: application/json
Content-Type: application/json

{
 "ProjectTaskID" : {"value" : "PHASE1"},
 "ProjectID" : {"value" : "TESTPR3"},
 "InventoryID" : {"value" : "<N/A>"},
 "Completed" : {"value" : 25},
 "PendingInvoiceAmount" : {"value" : 725}
}

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

6. Invoke project billing to create a pro forma invoice.

POST / HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/Project/
RunProjectBilling
Accept: application/json
Content-Type: application/json

{
 "entity" : {
 "ProjectID": {
 "value": "TESTPR3"
 },
 }
}

HTTP/1.1 202 Accepted
Location: [/<Acumatica ERP instance URL>]/entity/Default/18.200.001/
 Project/RunProjectBilling/status/6952c6d1-04be-4330-a26e-c6b855ba332c

7. Monitor the status of the operation.

GET /RunProjectBilling/status/6952c6d1-04be-4330-a26e-c6b855ba332c HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/Project
Accept: application/json
Content-Type: application/json

HTTP/1.1 204 No Content

| Contract-Based API Examples | 242

8. Obtain the list of pro forma invoices of the project (which currently contains only one pro forma
invoice) by adding $expand=Invoices to the endpoint address. For details about parameters, see
Parameters for Retrieving Records.

To obtain the list of pro forma invoices of the project with the TESTPR3 project
ID, you can also use the GET request for the ProFormaInvoice entity with the
$filter=ProjectID eq ’TESTPR3 parameter.

GET /TESTPR3?$expand=Invoices HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/Project
Accept: application/json
Content-Type: application/json

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

9. Send the pro forma invoice by email.

POST /EmailProFormaInvoice HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/ProFormaInvoice
Accept: application/json
Content-Type: application/json

{
 "entity" : {
 "RefNbr": {
 "value": "000005"
 },
 }
}

HTTP/1.1 202 Accepted
Location: [/<Acumatica ERP instance URL>]/entity/Default/18.200.001/
 ProFormaInvoice/EmailProFormaInvoice/status/a4caa455-0eed-4c11-a5a9-2a8333e53db1

10. Monitor the status of the operation.

GET /EmailProFormaInvoice/status/a4caa455-0eed-4c11-a5a9-2a8333e53db1 HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/ProFormaInvoice
Accept: application/json
Content-Type: application/json

HTTP/1.1 204 No Content

Related Links

• Processing Pro Forma Invoices: General Information

• Project Billing: General Information

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c17cd234-2ac9-412e-a687-fa3ccdaa1e16
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b10042e7-5e77-4c46-8e71-b15bbdd9cadd

| Contract-Based API Examples | 243

Management of Account Groups

This example has been tested for Acumatica ERP 2020 R1 and may require code
modifications for other versions of Acumatica ERP.

Through the contract-based REST and SOAP APIs, external systems can create, modify, and remove
account groups.

The AccountGroup entity supports the creation, retrieval, update, and removal of the entity
itself; however, you cannot modify the list of accounts of a particular account group by using the
AccountGroup entity. Instead, you have to use the AccountGroup property in the Account entity. You
can use the DefaultAccountID property of the AccountGroup entity in order to specify the default
account for the group.

The removal of the default account from the group does not cause the DefaultAccountID
property to be updated automatically. If you remove the default account from the group, you
have to update the DefaultAccountID property.

User Scenario

Through an external system, a project manager of a company needs to add and modify account groups
in Acumatica ERP to set up Acumatica ERP for project accounting. For more information about account
groups, see Account Groups: General Information.

Testing of the Examples

To test the code below, you configure your client application and the Acumatica ERP instance to be
used as follows:

• Deploy a new Acumatica ERP instance with the U100 dataset. For details on deploying an instance,
see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, make sure the Projects feature is enabled.

• To sign in to the instance in the client application, use the tenant name (which you specified when
you created the instance) and the HEADOFFICE branch.

Examples of REST API Requests

You can use the following sequence of examples of HTTP requests to create an account group and edit
accounts in it through the contract-based REST API:

In the request examples below, <Acumatica ERP instance URL> is the URL of the
Acumatica ERP instance (such as https://my.acumatica.com/MyInstance). You can omit
the instance name in the URL (such as https://my.acumatica.com) if the instance is
installed in the root of the website.

1. Create an account group.

PUT / HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/AccountGroup
Accept: application/json
Content-Type: application/json

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f8734904-a3f6-4cef-820b-330894038634
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b18ad378-0a8c-44f1-a14c-6b4f9c6271e4
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c1555e43-1bc5-4f6f-ba9d-b323f94d8a6b

| Contract-Based API Examples | 244

{
 "AccountGroupID" : {"value" : "ACCG02"},
 "Description" : {value: "Test Account Group"}
}

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

2. Add accounts to the account group.

PUT / HTTP/1.1
Host: [<Acumatica ERP instance name>]/entity/Default/18.200.001/Account
Accept: application/json
Content-Type: application/json

{
 "AccountCD" : {"value" : "40000"},
 "AccountGroup" : {value: "ACCG02"}
}

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

PUT / HTTP/1.1
Host: [<Acumatica ERP instance name>]/entity/Default/18.200.001/Account
Accept: application/json
Content-Type: application/json

{
 "AccountCD" : {"value" : "40010"},
 "AccountGroup" : {value: "ACCG02"}
}

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

3. Specify the default account of the account group.

PUT / HTTP/1.1
Host: [<Acumatica ERP instance name>]/entity/Default/18.200.001/AccountGroup
Accept: application/json
Content-Type: application/json

{
 "DefaultAccountID" : {"value" : "40000"},
 "AccountGroupID" : {value: "ACCG02"}
}

HTTP/1.1 200 OK
Content-Type: application/json

| Contract-Based API Examples | 245

{ ... }

4. Obtain the list of accounts of the group.

GET / HTTP/1.1
Host: [<Acumatica ERP instance name>]/entity/Default/18.200.001/Account?
 $filter=AccountGroup%20eq%20'ACCG02'&$select=AccountCD
Accept: application/json
Content-Type: application/json

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

5. Remove an account from the group.

PUT / HTTP/1.1
Host: [<Acumatica ERP instance name>]/entity/Default/18.200.001/Account
Accept: application/json
Content-Type: application/json

{
 "AccountCD" : {"value" : "40010"},
 "AccountGroup" : {value: null}
}

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

Related Links

• Account Groups: General Information

Running of Project Billing

This example has been tested for Acumatica ERP 2020 R1 and may require code
modifications for other versions of Acumatica ERP.

Through the contract-based REST and SOAP APIs, external systems can run project billing for one
project as well as for multiple projects. This example shows how to run project billing for multiple
projects in Acumatica ERP from an external system. To run project billing for one project, you can
use the RunProjectBilling action of the Project entity. (You can find an example of the call of
RunProjectBilling in Creation of a Pro Forma Invoice.)

You use the ProjectBillingProcess or ProjectBillingProcessAll action of the ProjectBilling
entity to bill multiple projects at once. If you use the ProjectBillingProcess action, you select the
projects entities to be billed by specifying the value of the Selected field of ProjectBillingDetails,
as shown in the code example below. If you use the ProjectBillingProcessAll action, you can
filter the projects to be billed by using the Customer, CustomerClass, ProjectTemplate, and
StatementCycleThere fields of the ProjectBilling entity or bill all projects. You can use the
InvoiceDate and PostPeriod properties to specify the invoice date and fiscal period data for the
billing operation.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f8734904-a3f6-4cef-820b-330894038634

| Contract-Based API Examples | 246

User Scenario

Once a week, through an external system, a project manager of a company needs to run project billing
for selected projects in Acumatica ERP. For more information about project billing, see Project Billing:
General Information.

Testing of the Examples

To test the code below, you configure your client application and the Acumatica ERP instance to be
used as follows:

• Deploy a new Acumatica ERP instance with the U100 dataset. For details on deploying an instance,
see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, make sure the Projects feature is enabled.

• To sign in to the instance in the client application, use the tenant name (which you specified when
you created the instance) and the HEADOFFICE branch.

Examples of REST API Requests

You can use the following request examples to bill multiple projects through the contract-based REST
API:

In the request examples below, <Acumatica ERP instance URL> is the URL of the
Acumatica ERP instance (such as https://my.acumatica.com/MyInstance). You can omit
the instance name in the URL (such as https://my.acumatica.com) if the instance is
installed in the root of the website.

1. Retrieve the list of projects that can be billed by using the PUT HTTP method because the
ProjectBilling entity retrieves data from an inquiry. For details about retrieving data from an
inquiry, see Retrieval of Data from an Inquiry Form

PUT ?$expand=Details HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/ProjectBilling
Accept: application/json
Content-Type: application/json

{
 "InvoiceDate" : {"value" : "2019-08-15T00:00:00.000"}
}

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

2. Use the returned object to select the projects for billing and invoke billing. For details on the IDs of
the entities, see Retrieval of a Record by ID.

POST /ProjectBillingProcess HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/ProjectBilling
Accept: application/json
Content-Type: application/json

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b10042e7-5e77-4c46-8e71-b15bbdd9cadd
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b10042e7-5e77-4c46-8e71-b15bbdd9cadd
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b18ad378-0a8c-44f1-a14c-6b4f9c6271e4
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c1555e43-1bc5-4f6f-ba9d-b323f94d8a6b

| Contract-Based API Examples | 247

{
 "entity" :
 {
 "id": "24c71ef0-f874-43af-8ce7-e885548ecac2",
 "Details": [
 {
 "id": "714b5ed8-ec87-4c5f-a8d7-a9038b308e63",
 "Selected": {
 "value": true
 }
 }
]
 }
}

HTTP/1.1 202 Accepted
Location: [/<Acumatica ERP instance URL>]/entity/Default/18.200.001/
 ProjectBilling/ProjectBillingProcess/status/ce6a7728-5f8e-416f-bbe5-617d2725465c

3. Use the URL from the Location header to obtain the status of the long-running operation. When
the GET HTTP method with this URL returns 204 No Content, the operation is completed.

GET /ProjectBillingProcess/status/ce6a7728-5f8e-416f-bbe5-617d2725465c HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/ProjectBilling
Accept: application/json
Content-Type: application/json

HTTP/1.1 204 No Content

4. Invoke project billing for all projects available for billing.

POST /ProjectBillingProcessAll HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/ProjectBilling
Accept: application/json
Content-Type: application/json

{
 "entity" :
 {
 }
}

HTTP/1.1 202 Accepted
Location: [/<Acumatica ERP instance URL>]/entity/Default/18.200.001/
 ProjectBilling/ProjectBillingProcessAll/status/19ec8f98-6204-4758-b464-6e62d30b2973

5. Use the URL from the Location header to obtain the status of the long-running operation. When
the GET HTTP method with this URL returns 204 No Content, the operation is completed.

GET /ProjectBillingProcessAll/status/19ec8f98-6204-4758-b464-6e62d30b2973 HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/ProjectBilling
Accept: application/json
Content-Type: application/json

| Contract-Based API Examples | 248

HTTP/1.1 204 No Content

Related Links

• Project Billing: General Information

• Project Billing: To Bill a Project for Time and Material

Creation of a General Ledger Transaction with a Project
Code That Does Not Produce a Project Transaction

This example has been tested for Acumatica ERP 2020 R1 and may require code
modifications for other versions of Acumatica ERP.

Through the contract-based REST and SOAP APIs, external systems can import to Acumatica ERP
general ledger transactions with project codes that do not produce project transactions.

To create a general ledger transaction with a project code that does not produce a project transaction,
you set the IsNonPM field of the JournalTransaction entity to true.

User Scenario

A construction company builds an integrated solution of Acumatica ERP with an external payroll
system. The external payroll system calculates payoffs, including benefits, additions, deductions,
and taxes. Once a week, the construction company needs to import general ledger transactions with
project information from this payroll system to Acumatica ERP, where they are verified and released.
The construction company doesn't want to update the project subledger in Acumatica ERP with the
information from general ledger transactions (for example, if the standard labor costs have already
been posted to the project subledger from time entries).

Testing of the Examples

To test the code below, you configure your client application and the Acumatica ERP instance to be
used as follows:

• Deploy a new Acumatica ERP instance with the U100 dataset. For details on deploying an instance,
see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, make sure the Projects feature is enabled.

• To sign in to the instance in the client application, use the tenant name (which you specified when
you created the instance) and the HEADOFFICE branch.

Examples of REST API Requests

You can use the following request example to create a general ledger transaction through the contract-
based REST API.

In the request example below, <Acumatica ERP instance URL> is the URL of the Acumatica
ERP instance (such as https://my.acumatica.com/MyInstance). You can omit the instance
name in the URL (such as https://my.acumatica.com) if the instance is installed in the root
of the website.

PUT / HTTP/1.1

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b10042e7-5e77-4c46-8e71-b15bbdd9cadd
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c53c0b58-26c1-4385-a86e-d9cecd34d4c0
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b18ad378-0a8c-44f1-a14c-6b4f9c6271e4
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c1555e43-1bc5-4f6f-ba9d-b323f94d8a6b

| Contract-Based API Examples | 249

Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/JournalTransaction
Accept: application/json
Content-Type: application/json

{
 "Module" : {"value" : "GL"},
 "TransactionDate" : {"value" : "2019-08-15T00:00:00"},
 "Description" : {"value" : "Transaction description"},
 "BranchID" : {"value" : "HEADOFFICE"},
 "Details" : [
 {
 "BranchID" : {"value" : "HEADOFFICE"},
 "Account" : {"value" : "10200"},
 "Subaccount" : {"value" : "000-000"},
 "CostCode" : {"value" : "0000"},
 "IsNonPM" : {"value" : true},
 }
]
}

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

Time Entry

This example has been tested for Acumatica ERP 2020 R1 and may require code
modifications for other versions of Acumatica ERP.

Through the contract-based REST and SOAP APIs, the time spent on the tasks of projects can be
imported to Acumatica ERP from an external system.

The TimeSpent, BillableTime, and BillableOvertime fields of the TimeEntry entity have the
StringValue type. These fields accept values in the following format: "hh:mm", where hh is the
amount of hours, and mm is the amount of minutes.

The TimeEntryID field has the GuidValue type; however, its value is a sequentially generated string
that looks like a GUID. Therefore, the global uniqueness of the values is not guaranteed.

User Scenario

Employees enter the time spent on the project tasks into an external payroll system. Once a week,
the time entries are imported to Acumatica ERP from the payroll system. For more information about
tracking time on projects, see Employee Time Billing: General Information.

Testing of the Examples

To test the code below, you configure your client application and the Acumatica ERP instance to be
used as follows:

• Deploy a new Acumatica ERP instance with the U100 dataset. For details on deploying an instance,
see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, make sure the Projects feature is enabled.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c17cd444-2ac9-4e6e-a687-fa3ccdaa1214
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b18ad378-0a8c-44f1-a14c-6b4f9c6271e4
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c1555e43-1bc5-4f6f-ba9d-b323f94d8a6b

| Contract-Based API Examples | 250

• To sign in to the instance in the client application, use the tenant name (which you specified when
you created the instance) and the HEADOFFICE branch.

Examples of REST API Requests

You can use the following request example for time entry through the contract-based REST API.

In the request example below, <Acumatica ERP instance URL> is the URL of the Acumatica
ERP instance (such as https://my.acumatica.com/MyInstance). You can omit the instance
name in the URL (such as https://my.acumatica.com) if the instance is installed in the root
of the website.

PUT / HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/TimeEntry
Accept: application/json
Content-Type: application/json

{
 "Summary" : {"value" : "Time entry summary"},
 "Date" : {"value" : "2019-08-17T05:50:43.233" },
 "Time" : {"value" : "2019-08-17T05:50:43.233" },
 "Employee" : {"value" : "EP00000002" },
 "ProjectID" : {"value" : "TOMYUM1" },
 "ProjectTaskID" : {"value" : "PHASE1" },
 "CostCode" : {"value" : "0000" },
 "EarningType" : {"value" : "RG" },
 "TimeSpent" : {"value" : "01:30" },
 "BillableTime" : {"value" : "00:30" },
}

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

Search for Time Entries by Date

This example has been tested for Acumatica ERP 2020 R1 and may require code
modifications for other versions of Acumatica ERP.

Through the contract-based REST and SOAP APIs, the time spent on project tasks can be retrieved
from Acumatica ERP to an external system.

To filter time entries by date, you cannot use the TimeEntry.Date field of the Default/18.200.001
system endpoint. Instead of this field, you should use the custom Items.Date field, as shown in this
example.

User Scenario

The time spent on the project tasks is stored in Acumatica ERP. For reporting purposes, time entries
for a particular date need to be exported to a business intelligence (BI) system. For more information
about tracking time on projects, see Employee Time Billing: General Information.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c17cd444-2ac9-4e6e-a687-fa3ccdaa1214

| Contract-Based API Examples | 251

Testing of the Examples

To test the code below, you configure your client application and the Acumatica ERP instance to be
used as follows:

• Deploy a new Acumatica ERP instance with the U100 dataset. For details on deploying an instance,
see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, make sure the Projects feature is enabled.

• To sign in to the instance in the client application, use the tenant name (which you specified when
you created the instance) and the HEADOFFICE branch.

Example of a REST API Request

You can use the following request example to obtain time entries through the contract-based REST API.

In the request example below, <Acumatica ERP instance URL> is the URL of the Acumatica
ERP instance (such as https://my.acumatica.com/MyInstance). You can omit the instance
name in the URL (such as https://my.acumatica.com) if the instance is installed in the root
of the website.

GET ?$filter=cf.DateTime(f='Items.Date')%20ge%20datetimeoffset'2019-08-17'
 %20and%20cf.DateTime(f='Items.Date')%20le%20
 datetimeoffset'2019-08-18T23%3A59%3A59.999%2B04%3A00'&
 $select=Date,ProjectID,TimeSpent,BillableTime HTTP/1.1
Host: [<Acumatica ERP instance name>]/entity/Default/18.200.001/TimeEntry
Accept: application/json
Content-Type: application/json

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

Related Links

• Employee Time Billing: General Information

Customer Relationship Management (REST API
Example)

You can use contract-based REST APIs for the integration of customer relationship management in
Acumatica ERP with external systems. For details on customer relationship management, see CRM:
General Information.

The following topic presents an example of the integration of customer relationship management in
Acumatica ERP with an external system:

• Linking of a Case to Another Case

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b18ad378-0a8c-44f1-a14c-6b4f9c6271e4
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c1555e43-1bc5-4f6f-ba9d-b323f94d8a6b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c17cd444-2ac9-4e6e-a687-fa3ccdaa1214
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d99a3c7c-ece8-4683-b350-0b0b8482def0
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d99a3c7c-ece8-4683-b350-0b0b8482def0

| Contract-Based API Examples | 252

Linking of a Case to Another Case

This example has been tested for Acumatica ERP 2020 R1 and may require code
modifications for other versions of Acumatica ERP.

Through the contract-based REST and SOAP APIs, external systems can create cases in Acumatica ERP
and link them to another case defined in Acumatica ERP. For details about the relations between cases,
see Case Processing.

To create a case and establish its relation with another case, you need to specify the case ID of the
related case by using the CaseID field of the RelatedCases detail entity of the Case entity.

The ParentCaseID field of the RelatedCases detail entity of the Case entity is never
returned by the system and cannot be used for assignment of values.

User Scenario

Through an external system, a customer service representative needs to create a case that is linked to
another case in Acumatica ERP.

Testing of the Examples

To test the code below, you do the following to configure your client application and the Acumatica ERP
instance to be used:

• Deploy a new Acumatica ERP instance with the U100 dataset. For details on deploying an instance,
see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, make sure the Inventory and Order Management
feature is enabled.

• To sign in to the instance in the client application, use the tenant name (which you specified when
you created the instance) and the HEADOFFICE branch.

Example of a REST API Request
You can use the following request example for time entry through the contract-based REST API.

In the request example below, <Acumatica ERP instance URL> is the URL of the Acumatica
ERP instance (such as https://my.acumatica.com/MyInstance). You can omit the instance
name in the URL (such as https://my.acumatica.com) if the instance is installed in the root
of the website.

PUT / HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/18.200.001/Case
Accept: application/json
Content-Type: application/json

{
 "ClassID": {
 "value": "SERVCONS"
 },
 "BusinessAccount": {

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=1455056a-4d40-4e89-9427-6e498ecc741f
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b18ad378-0a8c-44f1-a14c-6b4f9c6271e4
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c1555e43-1bc5-4f6f-ba9d-b323f94d8a6b

| Contract-Based API Examples | 253

 "value": "GOODFOOD"
 },
 "Subject": {
 "value": "Billing plan"
 },
 "RelatedCases": [
 {
 "CaseID": {
 "value": "000004"
 }
 }
]
}

Related Links

• Case Processing

Linking of an Activity to an Entity

By using the contract-based REST API, you can establish the relationship of Activity, Event, Task,
and Email objects with other objects in Acumatica ERP. To do this in the Default/20.200.001 endpoint,
you use the following fields of the Activity entity:

• RelatedEntityNoteID: The NoteID value of the object with which the relationship is established.

• RelatedEntityType: The full name of the type of the object with which the relationship is
established (for example, PX.Objects.CR.Contact). This field is optional, but we recommend
using it. The field can be omitted only if the object with which the relationship is established has a
persisting note record in the database (BusinessAccount objects always have such records, while
Contact and Lead objects do not).

• RelatedEntityDescription: The description of the related object. This field is read-only.

The object with which the relationship is established by means of the fields listed above
must have the NoteID field decorated with the PXNoteAttribute attribute; also, the
ShowInReferenceSelector property must be set to true. (These are the same requirements
on the object to make it visible in a selector control.) If an object does not meet these
requirements, the relationship cannot be established.

User Scenario

Through an external system, a customer service representative needs to create a lead and an activity
that is linked to the lead in Acumatica ERP.

Testing of the Examples

To test the code below, you do the following to configure your client application and the Acumatica ERP
instance to be used:

• Deploy a new Acumatica ERP instance with the U100 dataset. For details on deploying an instance,
see To Deploy an Acumatica ERP Instance in the Installation Guide.

• To sign in to the instance in the client application, use the tenant name (which you specified when
you created the instance) and the HEADOFFICE branch.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=1455056a-4d40-4e89-9427-6e498ecc741f
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b18ad378-0a8c-44f1-a14c-6b4f9c6271e4

| Contract-Based API Examples | 254

Example of a REST API Request
You can use the following request example to create a lead through the contract-based REST API.

In the request examples below, <Acumatica ERP instance URL> is the URL of the
Acumatica ERP instance (such as https://my.acumatica.com/MyInstance). You can omit
the instance name in the URL (such as https://my.acumatica.com) if the instance is
installed in the root of the website.

PUT / HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/20.200.001/Lead
Accept: application/json
Content-Type: application/json

{
 "FirstName": {"value": "Brent"},
 "LastName": {"value": "Edds"},
 "Email": {"value": "brent.edds.test27@avantehs.com"}
}

The response body contains the ID field whose value you will use as the NoteID value in the following
example. You use this request example to create an activity that is linked to the lead just created.

PUT / HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/20.200.001/Activity
Accept: application/json
Content-Type: application/json

{
 "Summary": {"value": "Automated Test"},
 "Type": {"value": "M"},
 "RelatedEntityNoteID": {"value": "{{NoteID}}"},
 "RelatedEntityType": {"value": "PX.Objects.CR.CRLead"},
 "ActivityDetails":{"value": "Automated Test"}
}

Working with Attributes of Top-Level Entities

In the Default/20.200.001 endpoint, the attributes of top-level entities are exposed in the
AttributeValue entities. An AttributeValue entity has the following fields:

• AttributeID : The attribute identifier. Both internal values and external values can be used to set
this field, but only the internal value can be retrieved.

• AttributeDescription: The external value of the attribute identifier. The field is read-only.

• Value: The attribute value. When the value is retrieved, the internal value is returned. To set the
value, the internal value and, for control types other than multiselect combo boxes, the external
value can be used. For multiselect combo boxes, an external value can be accepted only if it
contains a single value without commas. For various control types, the following rules apply to the
Value field:

| Contract-Based API Examples | 255

• For check boxes, 0 is returned if the check box is not selected, and 1 is returned if the check
box is selected. For setting a value, 0, 1, false (case-insensitive), or true (case-insensitive) can
be used.

• For multiselect combo boxes, the values separated by commas (namely, Value1,Value2,Value3)
compose the internal value.

• For selectors, the values are set and retrieved in the same way as they are for text boxes.

• For date edit boxes, the internal values must be parseable by using the
System.Globalization.CultureInfo.InvariantCulture Microsoft .NET object.

• For combo boxes of all types, date edit boxes, and check boxes, an error message is written to
the error field when an attempt is made to set an unsupported value.

• ValueDescription: The external value of the attribute. The field is read-only. For various control
types, the external value means the following:

• For text boxes and date edit boxes, the external value is the same as the internal value.

• For check boxes, the external value can be either True or False.

• For combo boxes, the label is used as the external value.

• For multiselect combo boxes, the labels separated by commas and spaces after commas
(namely, Label1, Label2, Label3) compose the external value.

• Required: Specifies whether the attribute is mandatory. This field is read-only.

• RefNoteID: The value of the NoteID field of the object to which this attribute is referred. This field
is read-only.

User Scenario

Through an external system, a customer service representative needs to create a contact with
attributes in Acumatica ERP.

Testing of the Examples

To test the code below, you do the following to configure your client application and the Acumatica ERP
instance to be used:

• Deploy a new Acumatica ERP instance with the U100 dataset. For details on deploying an instance,
see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, make sure the Customer Management feature is
enabled.

• To sign in to the instance in the client application, use the tenant name (which you specified when
you created the instance) and the HEADOFFICE branch.

Example of a REST API Request
You can use the following request example to create a lead through the contract-based REST API.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b18ad378-0a8c-44f1-a14c-6b4f9c6271e4
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c1555e43-1bc5-4f6f-ba9d-b323f94d8a6b

| Contract-Based API Examples | 256

In the request example below, <Acumatica ERP instance URL> is the URL of the Acumatica
ERP instance (such as https://my.acumatica.com/MyInstance). You can omit the instance
name in the URL (such as https://my.acumatica.com) if the instance is installed in the root
of the website.

PUT / HTTP/1.1
Host: [<Acumatica ERP instance URL>]/entity/Default/20.200.001/Contact
Accept: application/json
Content-Type: application/json

{
 "FirstName": {"value": "Brent"},
 "LastName": {"value": "Edds"},
 "Email": {"value": "brent.edds.test27@avantehs.com"},
 "Attributes": [
 {
 "AttributeID": {"value": "INTEREST"},
 "Value": {"value": "Jam,Maint"}
 }
]
}

POS Systems (SOAP API Examples)

A point-of-sale (POS) system is a system where the customer pays for the items or services that he
or she wants to buy. The POS system can be operated by a cashier or can be a self-service terminal
where customers perform all operations by themselves.

Examples of the integration of Acumatica ERP with POS systems include the following:

• Entry of a Direct Sales Invoice

• Entry of a Direct Sales Invoice Along with a Return

• Entry of a Credit Memo with Positive and Negative Lines

• Entry of a Direct Sales Invoice in a Non-Default Currency

• Entry of a Direct Sales Invoice for a Shipped Order and Return

• Entry of a Direct Sales Invoice for an Unshipped Sales Order

• Entry of a Direct Sales Invoice for a Partially Shipped Sales Order

• Entry of a Credit Memo for an Unshipped Sales Order

| Contract-Based API Examples | 257

Entry of a Direct Sales Invoice

This example has been tested for Acumatica ERP 2018 R1 and may require code
modifications for other versions of Acumatica ERP.

A point-of-sale (POS) system can create and process direct sales invoices—that is, invoices for which
neither a sales order nor a shipment has been created. The POS system creates a direct sales invoice
and a payment, applies this payment to the invoice, and releases the invoice.

User Scenario

A customer comes to the store, picks up a number of items (including a motherboard, which is a
serialized item), and receives a consulting service from a store consultant. The customer would like to
buy the items and pay for the service. In the POS system, one invoice is created for this operation.

Code Example

You can use the code below to create a payment and a sales invoice, which includes lines for serialized
stock items, not-serialized stock items, and non-stock items.

To test this code example, configure your client application and an Acumatica ERP instance as follows:

• Deploy a new Acumatica ERP instance with the SalesDemo dataset inserted. For details on
deploying an instance, see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, enable the Advanced SO Invoices feature.

• In the client application, add a service reference to the POS/17.200.01 endpoint, which is an
extension of the Default/17.200.001 endpoint. For details on how to add a service reference, see
To Configure the Client Application in this guide.

• To sign in to the instance in the client application, use the company name (which you specified
when you created the instance) and the HQ branch.

using System;
using System.Linq;
using System.IO;
using System.Threading;
using System.Collections.Generic;
//Add the namespace of the service reference here

public static void EnterDirectSalesInvoice(DefaultSoapClient soapClient)
{
 //Input data
 //The customer
 const string CustomerABARTENDE = "ABARTENDE";
 //The customer's tax zone
 const string TaxZoneCANADABC = "CANADABC";
 //The sold stock items
 const string InventoryAACOMPUT01 = "AACOMPUT01";
 const string InventoryAALEGO500 = "AALEGO500";
 //The sold non-stock items
 const string InventoryADMCHARGE = "ADMCHARGE";
 const string InventoryCASELABOR = "CASELABOR";

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b18ad378-0a8c-44f1-a14c-6b4f9c6271e4
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c1555e43-1bc5-4f6f-ba9d-b323f94d8a6b

| Contract-Based API Examples | 258

 //The sold serialized stock item
 const string InventoryAAMACHINE1 = "AAMACHINE1";
 //The warehouse, which is the same for all items in this example
 const string WarehouseWHOLESALE = "WHOLESALE";
 //The location related to InventoryAACOMPUT01, InventoryAALEGO500,
 //and InventoryAAMACHINE1
 const string LocationR1S1 = "R1S1";
 //The UOM related to InventoryCASELABOR
 const string UOMMINUTE = "MINUTE";
 //The payment amount
 const decimal PaymentAmountDisc = 31539.05m;
 //The billing address
 const string AddressLine1 = "Fillmore Str";
 const string City = "San Francisco";
 const string State = "CA";
 const string SerialNumberAAMACHINE1 = "SRF000007";

 //Specify the tax zone for the customer
 soapClient.Put(new Customer
 {
 CustomerID = new StringSearch { Value = CustomerABARTENDE },
 TaxZone = new StringValue { Value = TaxZoneCANADABC },
 ReturnBehavior = ReturnBehavior.OnlySpecified
 });

 //Create a payment for the customer
 Payment payment = (Payment)soapClient.Put(new Payment
 {
 Type = new StringValue { Value = "Payment" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 PaymentAmount = new DecimalValue { Value = PaymentAmountDisc },
 ReferenceNbr = new StringReturn(),
 ReturnBehavior = ReturnBehavior.OnlySpecified
 });

 //Create a sales invoice
 SalesInvoice invoice = (SalesInvoice)soapClient.Put(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 Type = new StringValue { Value = "Invoice" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 //Specify details of the sales invoice
 Details = new SalesInvoiceDetail[]
 {
 //a sold stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryAACOMPUT01},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},
 Location = new StringValue {Value = LocationR1S1},
 Qty = new DecimalValue {Value = 5}
 },
 //a sold stock item
 new SalesInvoiceDetail()

| Contract-Based API Examples | 259

 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryAALEGO500},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},
 Location = new StringValue {Value = LocationR1S1},
 Qty = new DecimalValue {Value = 4},
 UnitPrice = new DecimalValue {Value = 100}
 },
 //a sold non-stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryADMCHARGE},
 Qty = new DecimalValue {Value = 3},
 UnitPrice = new DecimalValue {Value = 100}
 },
 //a sold non-stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryCASELABOR},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},
 Qty = new DecimalValue {Value = 2},
 UOM = new StringValue {Value = UOMMINUTE},
 UnitPrice = new DecimalValue {Value = 20}
 },
 //a sold serialized stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryAAMACHINE1},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},
 Location = new StringValue {Value = LocationR1S1},
 Qty = new DecimalValue {Value = 1},
 LotSerialNbr = new StringValue {Value = SerialNumberAAMACHINE1 }
 }
 },
 //Override the billing address of the invoice
 BillingSettings = new BillToSettings
 {
 BillToAddressOverride = new BooleanValue { Value = true },
 BillToAddress = new Address
 {
 AddressLine1 = new StringValue { Value = AddressLine1 },
 City = new StringValue { Value = City },
 State = new StringValue { Value = State }
 },
 ReturnBehavior = ReturnBehavior.All
 },
 //Specify additional data to be retrieved
 ApplicationsInvoice = new SalesInvoiceApplicationInvoice[]
 {
 new SalesInvoiceApplicationInvoice
 {
 ReturnBehavior = ReturnBehavior.All

| Contract-Based API Examples | 260

 }
 },
 FinancialDetails = new SalesInvoiceFinancialDetails
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 CustomerTaxZone = new StringReturn()
 }
 });

 //Among the applications, select the payment created in this example
 //and specify the Amount Paid value
 SalesInvoiceApplicationInvoice application = invoice.ApplicationsInvoice
 .Where(applicationPayment =>
 applicationPayment.AdjustingDocReferenceNbr.Value ==
 payment.ReferenceNbr.Value).Single();
 application.AmountPaid.Value = PaymentAmountDisc;

 //Release the invoice.
 //(The Invoke method updates the invoice data (the AmountPaid value) first
 //and then releases the invoice.)
 InvokeResult invokeResult =
 soapClient.Invoke(invoice, new ReleaseSalesInvoice());
 //Monitor the status of the release operation.
 //(The GetProcessResult function is defined below.)
 ProcessResult processResult = GetProcessResult(soapClient,invokeResult);

 //Obtain the released invoice with the needed information
 invoice = (SalesInvoice)soapClient.Get(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ID = processResult.EntityId,
 Type = new StringReturn(),
 ReferenceNbr = new StringReturn(),
 Status = new StringReturn(),
 FinancialDetails = new SalesInvoiceFinancialDetails
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 BatchNbr = new StringReturn(),
 },
 TaxDetails = new SalesInvoiceTaxDetail[]
 {
 new SalesInvoiceTaxDetail {ReturnBehavior = ReturnBehavior.All }
 },
 ApplicationsInvoice = new SalesInvoiceApplicationInvoice[]
 {
 new SalesInvoiceApplicationInvoice
 {
 ReturnBehavior = ReturnBehavior.All
 }
 },
 Details = new SalesInvoiceDetail[]
 {
 new SalesInvoiceDetail
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,

| Contract-Based API Examples | 261

 InventoryDocType = new StringReturn(),
 InventoryRefNbr = new StringReturn()
 }
 }
 });
}

//Long-running operation helper
public static ProcessResult GetProcessResult(
 DefaultSoapClient soapClient, InvokeResult invokeResult)
{
 while (true)
 {
 var processResult = soapClient.GetProcessStatus(invokeResult);
 switch (processResult.Status)
 {
 case ProcessStatus.Aborted:
 throw new SystemException("Process status: " +
 processResult.Status + "; Error: " + processResult.Message);
 case ProcessStatus.NotExists:
 case ProcessStatus.Completed:
 //Go to normal processing
 return processResult;
 case ProcessStatus.InProcess:
 //Insert the needed waiting time here
 if (processResult.Seconds > 30)
 throw new TimeoutException();
 continue;
 default:
 throw new InvalidOperationException();
 }
 }
}

Entry of a Direct Sales Invoice Along with a Return

This example has been tested for Acumatica ERP 2018 R1 and may require code
modifications for other versions of Acumatica ERP.

A point-of-sale (POS) system can create and process direct sales invoices (that is, invoices for which
neither a sales order nor a shipment has been created) and include in these invoices lines for a return
of previously sold items. The POS system creates a direct sales invoice and releases the invoice.

For simplicity, this example does not include the creation of the payment or the application
of the payment to the invoice. You can find an example showing how to create and apply a
payment in Entry of a Direct Sales Invoice.

User Scenario
A customer comes to the store and picks up a motherboard (which is a serialized item) and a patch
cord from store shelves. The customer would like to buy these items and to return the previously
purchased computer mouse. In a POS system, one invoice is created for the whole operation. The
customer pays the difference between the sale and the return.

| Contract-Based API Examples | 262

Code Example

You can use the code below to create a sales invoice that includes lines for serialized stock items, not-
serialized stock items, and return lines for previously sold items.

To test this code example, configure your client application and an Acumatica ERP instance as follows:

• Deploy a new Acumatica ERP instance with the SalesDemo dataset inserted. For details on
deploying an instance, see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, enable the Advanced SO Invoices feature.

• In the client application, add a service reference to the POS/17.200.01 endpoint, which is an
extension of the Default/17.200.001 endpoint. For details on how to add a service reference, see
To Configure the Client Application in this guide.

• To sign in to the instance in the client application, use the company name (which you specified
when you created the instance) and the HQ branch.

You can use the data of the direct sales invoice created in Entry of a Direct Sales Invoice for the
return lines for previously sold items.

using System;
using System.Linq;
using System.IO;
using System.Threading;
using System.Collections.Generic;
//Add the namespace of the service reference here

public static void EnterReturnAndDirectSalesInvoice(DefaultSoapClient soapClient)
{
 //Input data
 //The customer
 const string CustomerABARTENDE = "ABARTENDE";
 //The customer's tax zone
 const string TaxZoneCANADAAB = "CANADAAB";
 //The sold serialized stock item
 const string InventoryAAPOWERAID = "AAPOWERAID";
 //The serial number of InventoryAAPOWERAID
 const string LotSerialNbrLREX0 = "LREX0";
 //The warehouse related to InventoryAAPOWERAID
 const string WarehouseRETAIL = "RETAIL";
 //The location related to InventoryAAPOWERAID
 const string LocationSTORAGE = "STORAGE";
 //The sold non-stock item
 const string InventoryACCOMODATE = "ACCOMODATE";
 //The reference number of the invoice whose line items are returned
 const string CreatedSOInvoiceReferenceNbr = "AR005519";
 //The number of the returned line in the invoice
 //(in this example, the number of the line for InventoryAAMACHINE1)
 const int CreatedSOInvoiceLineNbr = 5;
 //The returned serialized stock item
 const string InventoryAAMACHINE1 = "AAMACHINE1";
 //The warehouse related to InventoryAAMACHINE1

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b18ad378-0a8c-44f1-a14c-6b4f9c6271e4
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c1555e43-1bc5-4f6f-ba9d-b323f94d8a6b

| Contract-Based API Examples | 263

 const string WarehouseWHOLESALE = "WHOLESALE";
 //The location related to InventoryAAMACHINE1
 const string LocationR1S1 = "R1S1";
 //The returned non-stock item
 const string InventoryADMCHARGE = "ADMCHARGE";

 //Create a sales invoice
 var invoice = (SalesInvoice)soapClient.Put(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 Type = new StringValue { Value = "Invoice" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 //Specify the customer's tax zone
 FinancialDetails = new SalesInvoiceFinancialDetails
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 CustomerTaxZone = new StringValue { Value = TaxZoneCANADAAB }
 },
 //Specify the details of the sales invoice
 Details = new SalesInvoiceDetail[]
 {
 //a sold serialized stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryAAPOWERAID},
 WarehouseID = new StringValue {Value = WarehouseRETAIL},
 Location = new StringValue {Value = LocationSTORAGE},
 LotSerialNbr = new StringValue {Value = LotSerialNbrLREX0},
 Qty = new DecimalValue {Value = 100}
 },
 //a sold non-stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryACCOMODATE},
 Qty = new DecimalValue {Value = 200},
 UnitPrice = new DecimalValue {Value = 200}
 },
 //a returned non-stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryADMCHARGE},
 Qty = new DecimalValue {Value = -1},
 OrigInvType = new StringValue {Value = "INV"},
 OrigInvNbr = new StringValue {Value = CreatedSOInvoiceReferenceNbr},
 UnitPrice = new DecimalValue {Value = 100}
 },
 //a returned serialized stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryAAMACHINE1},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},

| Contract-Based API Examples | 264

 Location = new StringValue {Value = LocationR1S1},
 Qty = new DecimalValue {Value = -1},
 OrigInvType = new StringValue {Value = "INV"},
 OrigInvNbr = new StringValue {Value = CreatedSOInvoiceReferenceNbr },
 OrigInvLineNbr = new IntValue {Value = CreatedSOInvoiceLineNbr }
 }
 },
 //Specify additional data to be retrieved
 TaxDetails = new SalesInvoiceTaxDetail[]
 {
 new SalesInvoiceTaxDetail
 {
 ReturnBehavior = ReturnBehavior.All
 }
 },
 });

 //Change the tax amount of the invoice to -100
 invoice.TaxDetails[0].TaxAmount.Value = -100m;

 //Release the invoice.
 //(The Invoke method updates the invoice data (the TaxAmount value) first
 //and then releases the invoice.)
 InvokeResult invokeResult = soapClient.Invoke(invoice, new ReleaseSalesInvoice());
 //Monitor the status of the release operation.
 //(The GetProcessResult function is defined below.)
 ProcessResult processResult = GetProcessResult(soapClient, invokeResult);

 //Obtain the released invoice with the needed information
 invoice = (SalesInvoice)soapClient.Get(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ID = processResult.EntityId,
 Type = new StringReturn(),
 ReferenceNbr = new StringReturn(),
 Status = new StringReturn(),
 FinancialDetails = new SalesInvoiceFinancialDetails
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 BatchNbr = new StringReturn(),
 },
 TaxDetails = new SalesInvoiceTaxDetail[]
 {
 new SalesInvoiceTaxDetail {ReturnBehavior = ReturnBehavior.All }
 },
 Details = new SalesInvoiceDetail[]
 {
 new SalesInvoiceDetail
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryDocType = new StringReturn(),
 InventoryRefNbr = new StringReturn()
 }
 }
 });

| Contract-Based API Examples | 265

}

//Long-running operation helper
public static ProcessResult GetProcessResult(
 DefaultSoapClient soapClient, InvokeResult invokeResult)
{
 while (true)
 {
 var processResult = soapClient.GetProcessStatus(invokeResult);
 switch (processResult.Status)
 {
 case ProcessStatus.Aborted:
 throw new SystemException("Process status: " +
 processResult.Status + "; Error: " + processResult.Message);
 case ProcessStatus.NotExists:
 case ProcessStatus.Completed:
 //Go to normal processing
 return processResult;
 case ProcessStatus.InProcess:
 //Insert the needed waiting time here
 if (processResult.Seconds > 30)
 throw new TimeoutException();
 continue;
 default:
 throw new InvalidOperationException();
 }
 }
}

Entry of a Credit Memo with Positive and Negative Lines

This example has been tested for Acumatica ERP 2018 R1 and may require code
modifications for other versions of Acumatica ERP.

A point-of-sale (POS) system can create and process credit memos with positive lines (for the returned
items) and negative lines (for the purchased items). (A credit memo is created instead of a direct sales
invoice if the payment amount of the returned items is greater than the payment amount of the newly
purchased items.) The POS system creates a credit memo, links the invoice that contains the returned
lines to the credit memo, and releases the credit memo.

User Scenario

A customer comes to the store and picks up a motherboard (which is a serialized item) and a
patch cord from the store shelves. The customer would like to buy these items and to return the
previously purchased notebook computer. The price of the returned item is greater than the price of
the purchased items. In a POS system, one invoice is created for the whole operation. The customer is
given the difference between the return and the sale.

Code Example

You can use the code below to create a credit memo with positive and negative lines.

To test this code example, configure your client application and an Acumatica ERP instance as follows:

| Contract-Based API Examples | 266

• Deploy a new Acumatica ERP instance with the SalesDemo dataset inserted. For details on
deploying an instance, see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, enable the Advanced SO Invoices feature.

• In the client application, add a service reference to the POS/17.200.01 endpoint, which is an
extension of the Default/17.200.001 endpoint. For details on how to add a service reference, see
To Configure the Client Application in this guide.

• To sign in to the instance in the client application, use the company name (which you specified
when you created the instance) and the HQ branch.

You can use the data of the invoice created in Entry of a Direct Sales Invoice Along with a Return
for the returned lines for previously sold items.

using System;
using System.Linq;
using System.IO;
using System.Threading;
using System.Collections.Generic;
//Add the namespace of the service reference here

public static void EnterCreditMemoWithPositiveAndNegativeLines(
 DefaultSoapClient soapClient)
{
 //Input data
 //The customer
 const string CustomerABARTENDE = "ABARTENDE";
 //The sold stock item
 const string InventoryAACOMPUT01 = "AACOMPUT01";
 //The warehouse related to InventoryAACOMPUT01
 const string WarehouseWHOLESALE = "WHOLESALE";
 //The location related to InventoryAACOMPUT01
 const string LocationR1S1 = "R1S1";
 //The tax category related to InventoryAACOMPUT01
 const string TaxCategoryTAXABLE = "TAXABLE";
 //The sold non-stock item
 const string InventoryCASELABORO = "CASELABORO";
 //The UOM related to InventoryCASELABORO
 const string UOMMINUTE = "MINUTE";
 //The reference number of the invoice whose line items are returned
 const string CreatedInvoiceNbr = "AR005520";
 //The returned serialized stock item
 const string InventoryAAPOWERAID = "AAPOWERAID";
 //The serial number of InventoryAAPOWERAID
 const string LotSerialNbrLREX000004 = "LREX000004";
 //The warehouse related to InventoryAAPOWERAID
 const string WarehouseRETAIL = "RETAIL";
 //The location related to InventoryAAPOWERAID
 const string LocationSTORAGE = "STORAGE";
 //The returned non-stock item
 const string InventoryCASELABOR = "CASELABOR";

 //Create a credit memo for the customer

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b18ad378-0a8c-44f1-a14c-6b4f9c6271e4
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c1555e43-1bc5-4f6f-ba9d-b323f94d8a6b

| Contract-Based API Examples | 267

 SalesInvoice creditMemo = (SalesInvoice)soapClient.Put(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 Type = new StringValue { Value = "Credit Memo" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 //Specify the details of the credit memo
 Details = new SalesInvoiceDetail[]
 {
 //a returned serialized stock item
 new SalesInvoiceDetail()
 {
 InventoryID = new StringValue {Value = InventoryAAPOWERAID},
 WarehouseID = new StringValue {Value = WarehouseRETAIL},
 Location = new StringValue {Value = LocationSTORAGE},
 Qty = new DecimalValue {Value = 10},
 LotSerialNbr = new StringValue {Value = LotSerialNbrLREX000004},
 ExpirationDate = new DateTimeValue
 {
 Value = new DateTime(2018, 10, 30)
 }
 },
 //a sold stock item
 new SalesInvoiceDetail()
 {
 InventoryID = new StringValue {Value = InventoryAACOMPUT01},
 Qty = new DecimalValue {Value = -1},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},
 Location = new StringValue {Value = LocationR1S1},
 TaxCategory = new StringValue { Value = TaxCategoryTAXABLE }
 },
 //a returned non-stock item
 new SalesInvoiceDetail()
 {
 InventoryID = new StringValue {Value = InventoryCASELABOR},
 Qty = new DecimalValue {Value = 100}
 },
 //a sold non-stock item
 new SalesInvoiceDetail()
 {
 InventoryID = new StringValue {Value = InventoryCASELABORO},
 Qty = new DecimalValue {Value = -2},
 UOM = new StringValue {Value = UOMMINUTE}
 }
 },
 //Link the credit memo to the invoice
 ApplicationsCreditMemo = new SalesInvoiceApplicationCreditMemo[]
 {
 new SalesInvoiceApplicationCreditMemo()
 {
 DocType = new StringValue {Value = "Invoice"},
 ReferenceNbr = new StringValue {Value = CreatedInvoiceNbr},
 AmountPaid = new DecimalValue {Value = 2000}
 }
 },
 //Specify additional data to be retrieved

| Contract-Based API Examples | 268

 TaxDetails = new SalesInvoiceTaxDetail[]
 {
 new SalesInvoiceTaxDetail
 {
 ReturnBehavior = ReturnBehavior.All
 }
 }
 });

 //Change the tax amount of the credit memo to -55
 creditMemo.TaxDetails[0].TaxAmount.Value = -55m;

 //Release the credit memo.
 //(The Invoke method updates the data (the TaxAmount value) first
 //and then releases the credit memo.)
 InvokeResult invokeResult =
 soapClient.Invoke(creditMemo, new ReleaseSalesInvoice());
 //Monitor the status of the release operation.
 //(The GetProcessResult function is defined below.)
 ProcessResult processResult = GetProcessResult(soapClient, invokeResult);

 //Obtain the released credit memo with the needed information
 creditMemo = (SalesInvoice)soapClient.Get(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ID = processResult.EntityId,
 Type = new StringReturn(),
 ReferenceNbr = new StringReturn(),
 Status = new StringReturn(),
 FinancialDetails = new SalesInvoiceFinancialDetails
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 BatchNbr = new StringReturn(),
 },
 Details = new SalesInvoiceDetail[]
 {
 new SalesInvoiceDetail
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryDocType = new StringReturn(),
 InventoryRefNbr = new StringReturn()
 }
 },
 ApplicationsInvoice = new SalesInvoiceApplicationInvoice[]
 {
 new SalesInvoiceApplicationInvoice
 {
 ReturnBehavior = ReturnBehavior.All
 }
 }
 });
}

//Long-running operation helper
public static ProcessResult GetProcessResult(

| Contract-Based API Examples | 269

 DefaultSoapClient soapClient, InvokeResult invokeResult)
{
 while (true)
 {
 var processResult = soapClient.GetProcessStatus(invokeResult);
 switch (processResult.Status)
 {
 case ProcessStatus.Aborted:
 throw new SystemException("Process status: " +
 processResult.Status + "; Error: " + processResult.Message);
 case ProcessStatus.NotExists:
 case ProcessStatus.Completed:
 //Go to normal processing
 return processResult;
 case ProcessStatus.InProcess:
 //Insert the needed waiting time here
 if (processResult.Seconds > 30)
 throw new TimeoutException();
 continue;
 default:
 throw new InvalidOperationException();
 }
 }
}

Entry of a Direct Sales Invoice in a Non-Default Currency

This example has been tested for Acumatica ERP 2018 R1 and may require code
modifications for other versions of Acumatica ERP.

A point-of-sale (POS) system can create and process direct sales invoices—that is, invoices for which
neither a sales order nor a shipment has been created—in a currency that differs from the default
currency of the customer account. The POS system creates a direct sales invoice in the needed
currency and releases the invoice.

For simplicity, this example does not include the creation of the payment or the application
of the payment to the invoice. You can find an example showing how to create and apply a
payment in Entry of a Direct Sales Invoice.

User Scenario

A customer comes to the Canadian store and picks up a patch cord from store shelves. The customer
would like to buy the item, return the previously purchased computer mouse, and pay for the service
in United States dollars. In a POS system, one invoice is created for this operation. The customer pays
the difference between the sale and return.

Code Example

You can use the code below to create a sales invoice for a direct sale in a currency that is different
from the customer's default currency.

To test this code example, configure your client application and an Acumatica ERP instance as follows:

| Contract-Based API Examples | 270

• Deploy a new Acumatica ERP instance with the SalesDemo dataset inserted. For details on
deploying an instance, see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, enable the Advanced SO Invoices feature.

• In the client application, add a service reference to the POS/17.200.01 endpoint, which is an
extension of the Default/17.200.001 endpoint. For details on how to add a service reference, see
To Configure the Client Application in this guide.

• To sign in to the instance in the client application, use the company name (which you specified
when you created the instance) and the HQ branch.

using System;
using System.Linq;
using System.IO;
using System.Threading;
using System.Collections.Generic;
//Add the namespace of the service reference here

public static void EnterDirectSalesInvoiceInOtherCurrency(
 DefaultSoapClient soapClient)
{
 //Input data
 //The customer
 const string CustomerABARTENDE = "ABARTENDE";
 //The sold stock item
 const string InventoryAACOMPUT01 = "AACOMPUT01";
 //The returned stock item
 const string InventoryAALEGO500 = "AALEGO500";
 //The returned non-stock item
 const string InventoryADMCHARGE = "ADMCHARGE";
 //The warehouse related to InventoryAALEGO500 and InventoryAACOMPUT01
 const string WarehouseWHOLESALE = "WHOLESALE";
 //The location related to InventoryAALEGO500 and InventoryAACOMPUT01
 const string LocationR1S1 = "R1S1";

 //Create an invoice for the customer
 SalesInvoice invoice = (SalesInvoice)soapClient.Put(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 Type = new StringValue { Value = "Invoice" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 //Specify the currency of the invoice
 Currency = new StringValue {Value = "EUR" },
 //Specify the invoice details
 Details = new SalesInvoiceDetail[]
 {
 //a sold stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryAACOMPUT01},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},
 Location = new StringValue {Value = LocationR1S1},

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b18ad378-0a8c-44f1-a14c-6b4f9c6271e4
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c1555e43-1bc5-4f6f-ba9d-b323f94d8a6b

| Contract-Based API Examples | 271

 Qty = new DecimalValue {Value = 20}
 },
 //a returned stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryAALEGO500},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},
 Location = new StringValue {Value = LocationR1S1},
 Qty = new DecimalValue {Value = -5}
 },
 //a returned non-stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryADMCHARGE},
 Qty = new DecimalValue {Value = -2},
 UnitPrice = new DecimalValue {Value = 100}
 }
 },
 //Specify additional values to be retrieved
 ReferenceNbr = new StringReturn()
 });

 //Release the invoice
 InvokeResult invokeResult = soapClient.Invoke(
 new SalesInvoice
 {
 Type = new StringSearch { Value = "Invoice" },
 ReferenceNbr = new StringSearch
 {
 Value = invoice.ReferenceNbr.Value
 },
 },
 new ReleaseSalesInvoice()
);
 //Monitor the status of the release operation.
 //(The GetProcessResult function is defined below.)
 ProcessResult processResult = GetProcessResult(soapClient, invokeResult);

 //Obtain the released invoice with the needed information
 invoice = (SalesInvoice)soapClient.Get(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ID = processResult.EntityId,
 Type = new StringReturn(),
 ReferenceNbr = new StringReturn(),
 Status = new StringReturn(),
 Balance = new DecimalReturn(),
 VATTaxableTotal = new DecimalReturn(),
 FinancialDetails = new SalesInvoiceFinancialDetails
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 BatchNbr = new StringReturn(),
 },

| Contract-Based API Examples | 272

 TaxDetails = new SalesInvoiceTaxDetail[]
 {
 new SalesInvoiceTaxDetail {ReturnBehavior = ReturnBehavior.All }
 },
 Details = new SalesInvoiceDetail[]
 {
 new SalesInvoiceDetail
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryDocType = new StringReturn(),
 InventoryRefNbr = new StringReturn()
 }
 },
 Commissions = new SalesInvoiceCommissions
 {
 ReturnBehavior = ReturnBehavior.All
 }
 });
}

//Long-running operation helper
public static ProcessResult GetProcessResult(
 DefaultSoapClient soapClient, InvokeResult invokeResult)
{
 while (true)
 {
 var processResult = soapClient.GetProcessStatus(invokeResult);
 switch (processResult.Status)
 {
 case ProcessStatus.Aborted:
 throw new SystemException("Process status: " +
 processResult.Status + "; Error: " + processResult.Message);
 case ProcessStatus.NotExists:
 case ProcessStatus.Completed:
 //Go to normal processing
 return processResult;
 case ProcessStatus.InProcess:
 //Insert the needed waiting time here
 if (processResult.Seconds > 30)
 throw new TimeoutException();
 continue;
 default:
 throw new InvalidOperationException();
 }
 }
}

| Contract-Based API Examples | 273

Entry of a Direct Sales Invoice for a Shipped Order and
Return

This example has been tested for Acumatica ERP 2018 R1 and may require code
modifications for other versions of Acumatica ERP.

A point-of-sale (POS) system can create and process sales invoices that contain both lines that are
not linked to any sales order or shipment and lines for which a sales order and shipment have been
created. Either type of line can include information about newly bought items or returned items.

To process these invoices, the POS system performs the following steps:

1. For the returned items that are linked to a sales order and shipment, creates a new sales order of
RM type (a generic authorized return).

2. In the created RM order, adds the previously issued invoice that contains the returned items.

3. In the RM order, adds the newly ordered items.

4. Creates and confirms shipments of the newly ordered items.

5. Creates shipments with the Receipt operation for the returned items and confirms these
shipments.

6. Creates a Sales Orders invoice and releases the invoice.

For simplicity, this example does not include the creation of the payment or the application
of the payment to the invoice. You can find an example showing how to create and apply a
payment in Entry of a Direct Sales Invoice.

User Scenario

In the online shop, a customer buys a computer mouse, but then the customer decides to return the
mouse. In the online shop, the customer creates an order that includes both the returned item and
a motherboard, then the customer decides to get the motherboard and to return the mouse in the
store. The customer comes to the store and picks up a patch cord from the store shelves. Thus, the
customer would like to buy the patch cord, to return the mouse, and to pay for the previously ordered
motherboard. In a POS system, one invoice is created for the whole operation.

Code Example

You can use the code below to create a direct sales invoice that combines a shipped order and a return.

To test this code example, configure your client application and an Acumatica ERP instance as follows:

• Deploy a new Acumatica ERP instance with the SalesDemo dataset inserted. For details on
deploying an instance, see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, enable the Advanced SO Invoices feature.

• In the client application, add a service reference to the POS/17.200.01 endpoint, which is an
extension of the Default/17.200.001 endpoint. For details on how to add a service reference, see
To Configure the Client Application in this guide.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b18ad378-0a8c-44f1-a14c-6b4f9c6271e4
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c1555e43-1bc5-4f6f-ba9d-b323f94d8a6b

| Contract-Based API Examples | 274

• To sign in to the instance in the client application, use the company name (which you specified
when you created the instance) and the HQ branch.

You can insert in the code the data of the direct sales invoice created in Entry of a Direct Sales
Invoice in a Non-Default Currency for the return lines for previously sold items.

using System;
using System.Linq;
using System.IO;
using System.Threading;
using System.Collections.Generic;
//Add the namespace of the service reference here

public static void EnterDirectSalesInvoiceWithShippedOrderAndReturn(
 DefaultSoapClient soapClient)
{
 //Input data
 //The customer
 const string CustomerABARTENDE = "ABARTENDE";
 //The sold stock item
 const string InventoryCONAIRT1 = "CONAIRT1";
 //The reference number of the customer's direct sales invoice
 //whose line is returned
 const string OriginalDirectSalesInvoiceReferenceNbr = "AR005522";
 //The number of the returned line in the invoice
 const int OriginalDirectSalesInvoiceLineNbr = 1;
 //The returned stock item from the direct sales invoice
 const string InventoryAACOMPUT01 = "AACOMPUT01";
 //The warehouse, which is the same for all items in this example
 const string WarehouseWHOLESALE = "WHOLESALE";
 //The location related to InventoryAACOMPUT01 and InventoryCONAIRT1
 const string LocationR1S1 = "R1S1";
 //A previously created customer's invoice that is linked to a sales order
 //and whose line is returned
 const string OriginalInvoiceWithSalesOrderReferenceNbr = "AR003117";
 //The returned stock item from the sales order
 const string InventoryWIDGET01 = "WIDGET01";
 //The sold stock item from the sales order
 const string InventoryAALEGO500 = "AALEGO500";

 //Create a generic authorized return (that is, a sales order of the RM type)
 SalesOrder order = (SalesOrder)soapClient.Put(new SalesOrder
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 OrderType = new StringValue { Value = "RM" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 OrderNbr = new StringReturn()
 });

 //Add an invoice with the returned line to the sales order
 soapClient.Invoke(order, new SalesOrderAddInvoice
 {
 DocumentType = new StringValue { Value = "Invoice" },

| Contract-Based API Examples | 275

 ReferenceNbr = new StringValue
 {
 Value = OriginalInvoiceWithSalesOrderReferenceNbr
 }
 });

 //Obtain the sales order with the added invoice
 order = (SalesOrder)soapClient.Get(new SalesOrder
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 OrderType = new StringSearch { Value = "RM" },
 OrderNbr = new StringSearch { Value = order.OrderNbr.Value },
 Details = new SalesOrderDetail[]
 {
 new SalesOrderDetail { ReturnBehavior = ReturnBehavior.All }
 }
 });

 //To the sales order, add a detail line with a newly ordered item
 var orderDetails = new SalesOrderDetail[]
 {
 order.Details[0],
 new SalesOrderDetail
 {
 InventoryID = new StringValue {Value = InventoryAALEGO500},
 OrderQty = new DecimalValue {Value = 1},
 Operation = new StringValue {Value = "Issue"}
 }
 };
 order.Details = orderDetails;

 //Create shipments for the created sales order
 //(The Invoke method updates the sales order first and then
 //creates shipments.)
 InvokeResult invokeResult = soapClient.Invoke(
 order,
 new SalesOrderCreateShipment
 {
 WarehouseID = new StringValue { Value = WarehouseWHOLESALE }
 }
);
 //Monitor the status of the long-running operation.
 //(The GetProcessResult function is defined below.)
 ProcessResult processResult = GetProcessResult(soapClient, invokeResult);

 //Obtain the sales order
 order = (SalesOrder)soapClient.Get(new SalesOrder
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ID = processResult.EntityId,
 Shipments = new SalesOrderShipment[]
 {
 new SalesOrderShipment { ReturnBehavior = ReturnBehavior.All }
 }
 });

| Contract-Based API Examples | 276

 //Confirm each shipment
 foreach (SalesOrderShipment salesOrderShipment in order.Shipments)
 {
 if (salesOrderShipment.ShipmentType.Value == "Shipment")
 {
 Shipment shipment = (Shipment)soapClient.Get(new Shipment
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ShipmentNbr = new StringSearch
 {
 Value = salesOrderShipment.ShipmentNbr.Value
 },
 Status = new StringReturn()
 });
 if (shipment.Status.Value != "Confirmed")
 {
 invokeResult =
 soapClient.Invoke(shipment, new ConfirmShipment());
 GetProcessResult(soapClient, invokeResult);
 }
 }
 }

 //Create a shipment with the Receipt operation for the returned items
 invokeResult = soapClient.Invoke(
 new SalesOrder{ID = order.ID},
 new SalesOrderCreateReceipt()
);
 processResult = GetProcessResult(soapClient, invokeResult);

 //Obtain the sales order
 order = (SalesOrder)soapClient.Get(new SalesOrder
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ID = processResult.EntityId,
 OrderType = new StringReturn(),
 OrderNbr = new StringReturn(),
 Shipments = new SalesOrderShipment[]
 {
 new SalesOrderShipment { ReturnBehavior = ReturnBehavior.All }
 }
 });

 //Confirm each new shipment
 foreach (SalesOrderShipment salesOrderShipment in order.Shipments)
 {
 if (salesOrderShipment.ShipmentType.Value == "Shipment")
 {
 Shipment shipment = (Shipment)soapClient.Get(new Shipment
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ShipmentNbr = new StringSearch
 {
 Value = salesOrderShipment.ShipmentNbr.Value

| Contract-Based API Examples | 277

 },
 Status = new StringReturn()
 });
 if (shipment.Status.Value != "Confirmed")
 {
 invokeResult =
 soapClient.Invoke(shipment, new ConfirmShipment());
 processResult = GetProcessResult(soapClient, invokeResult);
 }
 }
 }

 //Create a sales invoice
 SalesInvoice invoice = (SalesInvoice)soapClient.Put(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 Type = new StringValue { Value = "Invoice" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 Details = new SalesInvoiceDetail[]
 {
 //a sold stock item from sales order
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 OrderType = new StringValue {Value = "RM"},
 OrderNbr = order.OrderNbr,
 ShipmentNbr = order.Shipments[0].ShipmentNbr,
 InventoryID = new StringValue {Value = InventoryAALEGO500},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},
 Qty = new DecimalValue {Value = 1}
 },
 //a returned stock item from sales order
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 OrderType = new StringValue {Value = "RM"},
 OrderNbr = order.OrderNbr,
 ShipmentNbr = order.Shipments[1].ShipmentNbr,
 InventoryID = new StringValue {Value = InventoryWIDGET01},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},
 Qty = new DecimalValue {Value = -20}
 },
 //a returned stock item from the invoice
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 OrigInvType = new StringValue {Value = "INV"},
 OrigInvNbr = new StringValue
 {
 Value = OriginalDirectSalesInvoiceReferenceNbr
 },
 OrigInvLineNbr = new IntValue
 {
 Value = OriginalDirectSalesInvoiceLineNbr
 },

| Contract-Based API Examples | 278

 InventoryID = new StringValue {Value = InventoryAACOMPUT01},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},
 Location = new StringValue {Value = LocationR1S1},
 Qty = new DecimalValue {Value = -3}
 },
 //a sold stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryCONAIRT1},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},
 Location = new StringValue {Value = LocationR1S1},
 Qty = new DecimalValue {Value = 20}
 }
 },
 //Specify additional data to be retrieved
 ReferenceNbr = new StringReturn(),
 });

 //Release the invoice
 invokeResult = soapClient.Invoke(
 new SalesInvoice
 {
 Type = new StringSearch { Value = "Invoice" },
 ReferenceNbr = new StringSearch
 {
 Value = invoice.ReferenceNbr.Value
 },
 },
 new ReleaseSalesInvoice()
);
 processResult = GetProcessResult(soapClient, invokeResult);

 //Obtain the released invoice with the needed information
 invoice = (SalesInvoice)soapClient.Get(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ID = processResult.EntityId,
 Type = new StringReturn(),
 ReferenceNbr = new StringReturn(),
 Status = new StringReturn(),
 Balance = new DecimalReturn(),
 FinancialDetails = new SalesInvoiceFinancialDetails
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 BatchNbr = new StringReturn(),
 },
 Details = new SalesInvoiceDetail[]
 {
 new SalesInvoiceDetail
 {
 ReturnBehavior = ReturnBehavior.All
 }
 }
 });

| Contract-Based API Examples | 279

}

//Long-running operation helper
public static ProcessResult GetProcessResult(
 DefaultSoapClient soapClient, InvokeResult invokeResult)
{
 while (true)
 {
 var processResult = soapClient.GetProcessStatus(invokeResult);
 switch (processResult.Status)
 {
 case ProcessStatus.Aborted:
 throw new SystemException("Process status: " +
 processResult.Status + "; Error: " + processResult.Message);
 case ProcessStatus.NotExists:
 case ProcessStatus.Completed:
 //Go to normal processing
 return processResult;
 case ProcessStatus.InProcess:
 //Insert the needed waiting time here
 if (processResult.Seconds > 30)
 throw new TimeoutException();
 continue;
 default:
 throw new InvalidOperationException();
 }
 }
}

Entry of a Direct Sales Invoice for an Unshipped Sales
Order

This example has been tested for Acumatica ERP 2018 R1 and may require code
modifications for other versions of Acumatica ERP.

A point-of-sale (POS) system can create and process sales invoices that contain both lines that have
not been linked to any sales order or shipment and lines for which a sales order has been created and
a shipment has not been created. Either type of line can include information about newly bought items
or returned items.

To process these invoices, the POS system performs the following steps:

1. Creates a new sales order of the RM type (a generic authorized return) with the new items and
returned items.

2. Creates a payment.

3. Creates a Sales Orders (SO) invoice and adds detail lines for both the items from the sales order
and the new items.

4. Applies the payment to the invoice.

5. Releases the invoice. As a result of this operation, the sales order gets the Completed status in
Acumatica ERP. The SO invoice is added to the Shipments tab of the Sales Orders (SO301000)

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5

| Contract-Based API Examples | 280

form and is treated by the system as a shipment (that is, the invoice updates shipped quantity in
the sales order lines and updates inventory).

The sales order can be not completed if it was closed by the SO invoice partially (that is,
if some lines of the sales order are not shipped or invoiced).

User Scenario

A customer comes to the store and through a self-service terminal creates a sales order to buy a
computer and to return a computer mouse that the customer previously purchased in the store.
Then the customer picks up a patch cord from the store shelves. The customer would like to buy the
computer (specified in the created sales order) and the patch cord and to return the mouse (specified
in the sales order). In a POS system, one invoice is created for the whole operation.

Code Example

You can use the code below to create a direct sales invoice and include in it the items that were
previously ordered but not shipped.

To test this code example, configure your client application and an Acumatica ERP instance as follows:

• Deploy a new Acumatica ERP instance with the SalesDemo dataset inserted. For details on
deploying an instance, see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, enable the Advanced SO Invoices feature.

• In the client application, add a service reference to the POS/17.200.01 endpoint, which is an
extension of the Default/17.200.001 endpoint. For details on how to add a service reference, see
To Configure the Client Application in this guide.

• To sign in to the instance in the client application, use the company name (which you specified
when you created the instance) and the HQ branch.

using System;
using System.Linq;
using System.IO;
using System.Threading;
using System.Collections.Generic;
//Add the namespace of the service reference here

public static void EnterDirectSalesInvoiceWithNotShippedSalesOrder(
 DefaultSoapClient soapClient)
{
 //Input data
 //The customer
 const string CustomerABARTENDE = "ABARTENDE";
 //The sold stock item from a new sales order
 const string InventoryAACOMPUT01 = "AACOMPUT01";
 //The returned stock item from the sales order
 const string InventoryAALEGO500 = "AALEGO500";
 //The sold serialized stock item
 const string InventoryAAPOWERAID = "AAPOWERAID";
 //The warehouse related to InventoryAAPOWERAID
 const string WarehouseRETAIL = "RETAIL";
 //The warehouse related to InventoryAAPOWERAID

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b18ad378-0a8c-44f1-a14c-6b4f9c6271e4
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c1555e43-1bc5-4f6f-ba9d-b323f94d8a6b

| Contract-Based API Examples | 281

 const string LocationSTORAGE = "STORAGE";
 //The sold non-stock item
 const string InventoryACCOMODATE = "ACCOMODATE";
 //The serial number related to InventoryAAPOWERAID
 const string SerialNbrAAPOWERAID = "LREX0";
 //The payment amount
 const decimal PaymentAmount = 2863.6m;

 //Create a sales order of RM type
 SalesOrder order = (SalesOrder)soapClient.Put(new SalesOrder
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 OrderType = new StringValue { Value = "RM" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 Details = new SalesOrderDetail[]
 {
 new SalesOrderDetail
 {
 ReturnBehavior = ReturnBehavior.All,
 InventoryID = new StringValue {Value = InventoryAACOMPUT01},
 OrderQty = new DecimalValue {Value = 2m},
 Operation = new StringValue {Value = "Issue"}
 },
 new SalesOrderDetail
 {
 ReturnBehavior = ReturnBehavior.All,
 InventoryID = new StringValue {Value = InventoryAALEGO500},
 OrderQty = new DecimalValue {Value = 2m},
 Operation = new StringValue {Value = "Receipt"}
 }
 },
 //Specify additional values to be retrieved
 OrderNbr = new StringReturn()
 });

 //Create a payment
 Payment payment = (Payment)soapClient.Put(new Payment
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 Type = new StringValue { Value = "Payment" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 PaymentAmount = new DecimalValue { Value = 10000m },
 ReferenceNbr = new StringReturn()
 });

 //Create a sales invoice
 SalesInvoice invoice = (SalesInvoice)soapClient.Put(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 Type = new StringValue { Value = "Invoice" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 //Specify the details of the invoice
 Details = new SalesInvoiceDetail[]
 {
 //a sold stock item from the sales order

| Contract-Based API Examples | 282

 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryAACOMPUT01},
 OrderType = new StringValue {Value = "RM"},
 OrderNbr = new StringValue {Value = order.OrderNbr.Value},
 OrderLineNbr = order.Details[0].LineNbr,
 Qty = new DecimalValue {Value = 2}
 },
 //a returned stock item from the sales order
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryAALEGO500},
 OrderType = new StringValue {Value = "RM"},
 OrderNbr = new StringValue {Value = order.OrderNbr.Value},
 OrderLineNbr = order.Details[1].LineNbr,
 Qty = new DecimalValue {Value = -2},
 },
 //a sold serialized stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryAAPOWERAID},
 WarehouseID = new StringValue {Value = WarehouseRETAIL},
 Location = new StringValue {Value = LocationSTORAGE},
 LotSerialNbr = new StringValue {Value = SerialNbrAAPOWERAID },
 Qty = new DecimalValue {Value = 100}
 },
 //a sold non-stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryACCOMODATE},
 Qty = new DecimalValue {Value = 10},
 UnitPrice = new DecimalValue {Value = 200}
 },
 },
 //Specify additional values to be retrieved
 Balance = new DecimalReturn(),
 ApplicationsInvoice = new[]
 {
 new SalesInvoiceApplicationInvoice
 {
 ReturnBehavior = ReturnBehavior.All
 }
 }
 });

 //Select the application of the payment created in this example
 //and specify the Amount Paid value
 SalesInvoiceApplicationInvoice application = invoice.ApplicationsInvoice
 .Where(applicationPayment =>
 applicationPayment.AdjustingDocReferenceNbr.Value ==
 payment.ReferenceNbr.Value).Single();

| Contract-Based API Examples | 283

 application.AmountPaid.Value = PaymentAmount;

 //Release the invoice.
 //(The Invoke method updates the invoice data (the AmountPaid value) first
 //and then releases the invoice.)
 InvokeResult invokeResult =
 soapClient.Invoke(invoice, new ReleaseSalesInvoice());
 //Monitor the status of the release operation.
 //(The GetProcessResult function is defined below.)
 ProcessResult processResult = GetProcessResult(soapClient, invokeResult);

 //Obtain the released invoice with the needed information
 invoice = (SalesInvoice)soapClient.Get(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ID = processResult.EntityId,
 Type = new StringReturn(),
 ReferenceNbr = new StringReturn(),
 Status = new StringReturn(),
 FinancialDetails = new SalesInvoiceFinancialDetails
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 BatchNbr = new StringReturn(),
 },
 TaxDetails = new SalesInvoiceTaxDetail[]
 {
 new SalesInvoiceTaxDetail {ReturnBehavior = ReturnBehavior.All }
 },
 ApplicationsInvoice = new SalesInvoiceApplicationInvoice[]
 {
 new SalesInvoiceApplicationInvoice
 {
 ReturnBehavior = ReturnBehavior.All
 }
 },
 Details = new SalesInvoiceDetail[]
 {
 new SalesInvoiceDetail
 {
 ReturnBehavior = ReturnBehavior.All
 }
 }
 });
}

//Long-running operation helper
public static ProcessResult GetProcessResult(
 DefaultSoapClient soapClient, InvokeResult invokeResult)
{
 while (true)
 {
 var processResult = soapClient.GetProcessStatus(invokeResult);
 switch (processResult.Status)
 {
 case ProcessStatus.Aborted:

| Contract-Based API Examples | 284

 throw new SystemException("Process status: " +
 processResult.Status + "; Error: " + processResult.Message);
 case ProcessStatus.NotExists:
 case ProcessStatus.Completed:
 //Go to normal processing
 return processResult;
 case ProcessStatus.InProcess:
 //Insert the needed waiting time here
 if (processResult.Seconds > 30)
 throw new TimeoutException();
 continue;
 default:
 throw new InvalidOperationException();
 }
 }
}

Entry of a Direct Sales Invoice for a Partially Shipped Sales
Order

This example has been tested for Acumatica ERP 2018 R1 and may require code
modifications for other versions of Acumatica ERP.

A point-of-sale (POS) system can create and process a sales invoice that contains both of the
following: lines that have not been linked to any sales order or shipment, and lines for which a sales
order has been created and a shipment has been created (but the shipment does not include all items
of the sales order).

To process an invoice of this type, the POS system performs the following steps:

1. Creates a new sales order of the SO type with multiple items.

2. Creates a payment.

3. Creates a Sales Orders invoice and adds detail lines for some (but not all) items from the sales
order and the new items.

4. Applies the payment to the invoice.

5. Releases the invoice. At this moment, not all lines of the sales order are shipped. The sales order
has the Open status in Acumatica ERP. On the Shipments tab of the Sales Orders (SO301000)
form, for the sales order lines added to the invoice, a dummy shipment is created with the link to
the invoice.

6. Creates the second payment.

7. Applies the second payment to the sales order.

8. Creates a shipment or multiple shipments for the remaining (not shipped) lines of the sales order
and confirms each shipment.

9. Creates a Sales Orders invoice for each shipment and releases each invoice. As a result of the
release of the invoice or invoices the sales order gets the Completed status in Acumatica ERP.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5

| Contract-Based API Examples | 285

The sales order can be not completed if it was closed by the SO invoice partially (that is,
if some lines of the sales order are not shipped or invoiced).

User Scenario
A customer comes to the store and through a self-service terminal creates a sales order to buy a
computer and a computer mouse. Then the customer picks up a patch cord from the store shelves.
The customer would like to buy the mouse (from the sales order) and the grabbed patch cord, and to
have the computer shipped to the customer's home. In a POS system, one invoice is created for the
purchase in the store and another invoice is created for the computer to be shipped.

Code Example

You can use the code below to create a direct sales invoice and include in it the previously ordered
items that aren't yet shipped, and to configure the shipment and the invoice for the shipment.

To test this code example, configure your client application and an Acumatica ERP instance as follows:

• Deploy a new Acumatica ERP instance with the SalesDemo dataset inserted. For details on
deploying an instance, see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, enable the Advanced SO Invoices feature.

• In the client application, add a service reference to the POS/17.200.01 endpoint, which is an
extension of the Default/17.200.001 endpoint. For details on how to add a service reference, see
To Configure the Client Application in this guide.

• To sign in to the instance in the client application, use the company name (which you specified
when you created the instance) and the HQ branch.

using System;
using System.Linq;
using System.IO;
using System.Threading;
using System.Collections.Generic;
//Add the namespace of the service reference here

public static void EnterDirectSalesInvoiceWithPartiallyShippedOrder(
 DefaultSoapClient soapClient)
{
 //Input data
 //The customer
 const string CustomerABARTENDE = "ABARTENDE";
 //The sold stock items from a new sales order
 const string InventoryAACOMPUT01 = "AACOMPUT01";
 const string InventoryCONAIRT1 = "CONAIRT1";
 //The stock item (from the sales order) that is shipped later
 const string InventoryAALEGO500 = "AALEGO500";
 //The warehouse related to InventoryAALEGO500
 const string WarehouseWHOLESALE = "WHOLESALE";
 //The sold serialized stock item
 const string InventoryAAPOWERAID = "AAPOWERAID";
 //The warehouse related to InventoryAAPOWERAID
 const string WarehouseRETAIL = "RETAIL";
 //The location related to InventoryAAPOWERAID

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b18ad378-0a8c-44f1-a14c-6b4f9c6271e4
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c1555e43-1bc5-4f6f-ba9d-b323f94d8a6b

| Contract-Based API Examples | 286

 const string LocationSTORAGE = "STORAGE";
 //The serial number of InventoryAAPOWERAID
 const string LotSerialNbrLREX000004 = "LREX000004";
 //The first payment amount
 const decimal PaymentAmount = 922m;
 //The second payment amount
 const decimal PaymentAmount2 = 560m;

 //Create a sales order of the SO type
 SalesOrder order = (SalesOrder)soapClient.Put(new SalesOrder
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 OrderType = new StringValue { Value = "SO" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 Details = new SalesOrderDetail[]
 {
 new SalesOrderDetail
 {
 ReturnBehavior = ReturnBehavior.All,
 InventoryID = new StringValue {Value = InventoryAACOMPUT01},
 OrderQty = new DecimalValue {Value = 4m},
 UnitPrice = new DecimalValue { Value = 200}
 },
 new SalesOrderDetail
 {
 ReturnBehavior = ReturnBehavior.All,
 InventoryID = new StringValue {Value = InventoryAALEGO500},
 OrderQty = new DecimalValue {Value = 4m},
 UnitPrice = new DecimalValue { Value = 100}
 },
 new SalesOrderDetail
 {
 ReturnBehavior = ReturnBehavior.All,
 InventoryID = new StringValue {Value = InventoryCONAIRT1},
 OrderQty = new DecimalValue {Value = 4m},
 UnitPrice = new DecimalValue { Value = 50}
 }
 },
 OrderNbr = new StringReturn()
 });

 //Create a payment
 Payment payment = (Payment)soapClient.Put(new Payment
 {
 Type = new StringValue { Value = "Payment" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 PaymentAmount = new DecimalValue { Value = PaymentAmount }
 });

 //Create a sales invoice
 SalesInvoice invoice = (SalesInvoice)soapClient.Put(new SalesInvoice
 {
 Type = new StringValue { Value = "Invoice" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 Details = new SalesInvoiceDetail[]

| Contract-Based API Examples | 287

 {
 //a sold serialized stock item
 new SalesInvoiceDetail()
 {
 InventoryID = new StringValue {Value = InventoryAAPOWERAID},
 WarehouseID = new StringValue {Value = WarehouseRETAIL},
 Location = new StringValue {Value = LocationSTORAGE},
 Qty = new DecimalValue {Value = 2},
 LotSerialNbr = new StringValue {Value = LotSerialNbrLREX000004},
 ExpirationDate = new DateTimeValue
 {
 Value = new DateTime(2018, 10, 30)
 },
 UnitPrice = new DecimalValue { Value = 5m}
 },
 //a sold stock item from the sales order
 new SalesInvoiceDetail()
 {
 InventoryID = new StringValue {Value = InventoryAACOMPUT01},
 OrderType = new StringValue {Value = "SO"},
 OrderNbr = new StringValue {Value = order.OrderNbr.Value},
 OrderLineNbr = order.Details[0].LineNbr,
 Qty = new DecimalValue {Value = 4}
 },
 //a sold stock item from the sales order
 new SalesInvoiceDetail()
 {
 InventoryID = new StringValue {Value = InventoryCONAIRT1},
 OrderType = new StringValue {Value = "SO"},
 OrderNbr = new StringValue {Value = order.OrderNbr.Value},
 OrderLineNbr = order.Details[2].LineNbr,
 Qty = new DecimalValue {Value = 2},
 }
 },
 //Specify additional values to be retrieved
 ApplicationsInvoice = new[]
 {
 new SalesInvoiceApplicationInvoice
 {
 ReturnBehavior = ReturnBehavior.All
 }
 }
 });

 //Select the application of the payment created in this example
 //and specify the Amount Paid value
 SalesInvoiceApplicationInvoice application = invoice.ApplicationsInvoice
 .Where(applicationPayment =>
 applicationPayment.AdjustingDocReferenceNbr.Value ==
 payment.ReferenceNbr.Value).Single();
 application.AmountPaid.Value = PaymentAmount;

 //Release the invoice.
 //(The Invoke method updates the invoice data (the AmountPaid value) first
 //and then releases the invoice.)

| Contract-Based API Examples | 288

 InvokeResult invokeResult =
 soapClient.Invoke(invoice, new ReleaseSalesInvoice());
 //Monitor the status of the release operation.
 //(The GetProcessResult function is defined below.)
 ProcessResult processResult = GetProcessResult(soapClient, invokeResult);

 //Obtain the released invoice with the needed information
 invoice = (SalesInvoice)soapClient.Get(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ID = processResult.EntityId,
 Type = new StringReturn(),
 ReferenceNbr = new StringReturn(),
 Status = new StringReturn(),
 FinancialDetails = new SalesInvoiceFinancialDetails
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 BatchNbr = new StringReturn(),
 },
 TaxDetails = new SalesInvoiceTaxDetail[]
 {
 new SalesInvoiceTaxDetail {ReturnBehavior = ReturnBehavior.All }
 },
 ApplicationsInvoice = new SalesInvoiceApplicationInvoice[]
 {
 new SalesInvoiceApplicationInvoice
 {
 ReturnBehavior = ReturnBehavior.All
 }
 },
 Details = new SalesInvoiceDetail[]
 {
 new SalesInvoiceDetail
 {
 ReturnBehavior = ReturnBehavior.All
 }
 }
 });

 //Obtain the sales order with the needed data
 order = (SalesOrder)soapClient.Get(new SalesOrder
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 OrderType = new StringSearch { Value = order.OrderType.Value},
 OrderNbr = new StringSearch { Value = order.OrderNbr.Value},
 Status = new StringReturn(),
 Shipments = new SalesOrderShipment[]
 {
 new SalesOrderShipment
 {
 ReturnBehavior = ReturnBehavior.All
 }
 },
 Details = new SalesOrderDetail[]
 {

| Contract-Based API Examples | 289

 new SalesOrderDetail
 {
 ReturnBehavior = ReturnBehavior.All
 }
 }
 });

 //Create the second payment
 Payment payment2 = (Payment)soapClient.Put(new Payment
 {
 Type = new StringValue { Value = "Payment" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 PaymentAmount = new DecimalValue { Value = PaymentAmount2 }
 });

 //Apply the second payment to the sales order
 order.Payments = new Payments[]
 {
 new Payments()
 {
 ReferenceNbr = payment2.ReferenceNbr,
 AppliedToOrder = new DecimalValue {Value = PaymentAmount2}
 }
 };

 //Create a shipment for the not-yet-shipped items of the sales order
 //(The Invoke method updates the sales order first
 //and then creates shipments.)
 invokeResult = soapClient.Invoke(
 order,
 new SalesOrderCreateShipment
 {
 WarehouseID = new StringValue { Value = WarehouseWHOLESALE }
 }
);
 //Monitor the status of the operation
 processResult = GetProcessResult(soapClient, invokeResult);

 //Obtain the sales order with the created shipment or shipments
 order = (SalesOrder)soapClient.Get(new SalesOrder
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ID = processResult.EntityId,
 OrderType = new StringReturn(),
 OrderNbr = new StringReturn(),
 Status = new StringReturn(),
 Shipments = new SalesOrderShipment[]
 {
 new SalesOrderShipment { ReturnBehavior = ReturnBehavior.All }
 }
 });

 //Confirm each shipment and create an invoice from it
 List<Shipment> invoicedShipments = new List<Shipment>();
 foreach (SalesOrderShipment salesOrderShipment in order.Shipments)

| Contract-Based API Examples | 290

 {
 //Confirm each shipment
 if (salesOrderShipment.ShipmentType.Value == "Shipment")
 {
 Shipment shipment = (Shipment)soapClient.Get(new Shipment
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ShipmentNbr = new StringSearch
 {
 Value = salesOrderShipment.ShipmentNbr.Value
 },
 Status = new StringReturn()
 });
 if (shipment.Status.Value != "Confirmed")
 {
 invokeResult =
 soapClient.Invoke(shipment, new ConfirmShipment());
 processResult = GetProcessResult(soapClient, invokeResult);
 }
 }
 //Create an invoice for each shipment
 if (salesOrderShipment.ShipmentType.Value == "Shipment" &&
 salesOrderShipment.InvoiceNbr.Value == null)
 {
 Shipment shipment = (Shipment)soapClient.Get(new Shipment
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ShipmentNbr = new StringSearch
 {
 Value = salesOrderShipment.ShipmentNbr.Value
 },
 Status = new StringReturn()
 });

 invokeResult = soapClient.Invoke(shipment, new PrepareInvoice());
 processResult = GetProcessResult(soapClient, invokeResult);

 invoicedShipments.Add((Shipment)soapClient.Get(new Shipment
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ID = processResult.EntityId,
 ShipmentNbr = new StringReturn()
 }));
 }
 }

 //Obtain the sales order with the updated shipment or shipments
 order = (SalesOrder)soapClient.Get(order);

 //Release the invoices for each shipment
 foreach (SalesOrderShipment salesOrderShipment in order.Shipments)
 {
 if (invoicedShipments.FindIndex(x =>
 x.ShipmentNbr.Value == salesOrderShipment.ShipmentNbr.Value) > -1)
 {

| Contract-Based API Examples | 291

 SalesInvoice invoice2 = (SalesInvoice)soapClient.Get(
 new SalesInvoice()
 {
 Type = new StringSearch
 {
 Value = salesOrderShipment.InvoiceType.Value
 },
 ReferenceNbr = new StringSearch
 {
 Value = salesOrderShipment.InvoiceNbr.Value
 }
 }
);

 //Release the invoice
 invokeResult =
 soapClient.Invoke(invoice2, new ReleaseSalesInvoice());
 //Monitor the status of the release operation
 processResult = GetProcessResult(soapClient, invokeResult);
 }
 }
}

//Long-running operation helper
public static ProcessResult GetProcessResult(
 DefaultSoapClient soapClient, InvokeResult invokeResult)
{
 while (true)
 {
 var processResult = soapClient.GetProcessStatus(invokeResult);
 switch (processResult.Status)
 {
 case ProcessStatus.Aborted:
 throw new SystemException("Process status: " +
 processResult.Status + "; Error: " + processResult.Message);
 case ProcessStatus.NotExists:
 case ProcessStatus.Completed:
 //Go to normal processing
 return processResult;
 case ProcessStatus.InProcess:
 //Insert the needed waiting time here
 if (processResult.Seconds > 30)
 throw new TimeoutException();
 continue;
 default:
 throw new InvalidOperationException();
 }
 }
}

| Contract-Based API Examples | 292

Entry of a Credit Memo for an Unshipped Sales Order

This example has been tested for Acumatica ERP 2018 R1 and may require code
modifications for other versions of Acumatica ERP.

A point-of-sale (POS) system can create and process credit memos that contain both lines that have
been linked to a sales order of the RM type (a generic authorized return) and lines that have not been
linked to any sales order. The POS system creates a sales order of the RM type, creates a credit memo,
adds to the credit memo the lines from the sales order and other lines, and releases the credit memo.

User Scenario

In the online shop, a customer creates a sales order to buy a computer mouse and to return a
computer that the customer previously bought in the store; the customer then decides to perform
these operations in the store. After that, the customer decides to also return the patch cord (also
bought in the store) and goes to the store. In the POS system, one invoice is created for the whole
operation. The customer is given the difference between the return and sale.

Code Example

You can use the code below to create a credit memo with some lines linked to a sales order and other
lines not linked to any sales order.

To test this code example, configure your client application and an Acumatica ERP instance as follows:

• Deploy a new Acumatica ERP instance with the SalesDemo dataset inserted. For details on
deploying an instance, see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, enable the Advanced SO Invoices feature.

• In the client application, add a service reference to the POS/17.200.01 endpoint, which is an
extension of the Default/17.200.001 endpoint. For details on how to add a service reference, see
To Configure the Client Application in this guide.

• To sign in to the instance in the client application, use the company name (which you specified
when you created the instance) and the HQ branch.

using System;
using System.Linq;
using System.IO;
using System.Threading;
using System.Collections.Generic;
//Add the namespace of the service reference here

public static void EnterCreditMemoWithSalesOrder(DefaultSoapClient soapClient)
{
 //Input data
 //The customer
 const string CustomerABARTENDE = "ABARTENDE";
 //The sold stock item from a new sales order
 const string InventoryAACOMPUT01 = "AACOMPUT01";
 //The returned stock item from the sales order
 const string InventoryAALEGO500 = "AALEGO500";
 //The returned stock item

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=b18ad378-0a8c-44f1-a14c-6b4f9c6271e4
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c1555e43-1bc5-4f6f-ba9d-b323f94d8a6b

| Contract-Based API Examples | 293

 const string InventoryCONAIRT1 = "CONAIRT1";
 //The warehouse related to InventoryCONAIRT1
 const string WarehouseWHOLESALE = "WHOLESALE";
 //The location related to InventoryCONAIRT1
 const string LocationR1S1 = "R1S1";

 //Create a sales order of the RM type
 SalesOrder order = (SalesOrder)soapClient.Put(new SalesOrder
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 OrderType = new StringValue { Value = "RM" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 Details = new SalesOrderDetail[]
 {
 new SalesOrderDetail
 {
 ReturnBehavior = ReturnBehavior.All,
 InventoryID = new StringValue {Value = InventoryAACOMPUT01},
 OrderQty = new DecimalValue { Value = 3m},
 Operation = new StringValue { Value = "Issue"},
 UnitPrice = new DecimalValue { Value = 100m}
 },
 new SalesOrderDetail
 {
 ReturnBehavior = ReturnBehavior.All,
 InventoryID = new StringValue {Value = InventoryAALEGO500},
 OrderQty = new DecimalValue { Value = 3m},
 Operation = new StringValue { Value = "Receipt"},
 UnitPrice = new DecimalValue { Value = 50m}
 }
 },
 OrderNbr = new StringReturn()
 });

 //Create a credit memo
 SalesInvoice invoice = (SalesInvoice)soapClient.Put(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySystem,
 Type = new StringValue { Value = "Credit Memo" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 Details = new SalesInvoiceDetail[]
 {
 //a sold stock item from the sales order
 new SalesInvoiceDetail()
 {
 InventoryID = new StringValue {Value = InventoryAACOMPUT01},
 OrderType = new StringValue {Value = "RM"},
 OrderNbr = new StringValue {Value = order.OrderNbr.Value},
 OrderLineNbr = order.Details[0].LineNbr,
 Qty = new DecimalValue {Value = -3}
 },
 //a returned stock item from the sales order
 new SalesInvoiceDetail()
 {
 InventoryID = new StringValue {Value = InventoryAALEGO500},

| Contract-Based API Examples | 294

 OrderType = new StringValue {Value = "RM"},
 OrderNbr = new StringValue {Value = order.OrderNbr.Value},
 OrderLineNbr = order.Details[1].LineNbr,
 Qty = new DecimalValue {Value = 3},
 },
 //a returned stock item
 new SalesInvoiceDetail()
 {
 InventoryID = new StringValue {Value = InventoryCONAIRT1},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},
 Location = new StringValue {Value = LocationR1S1},
 Qty = new DecimalValue {Value = 3},
 UnitPrice = new DecimalValue { Value = 200m}
 }
 },
 });

 //Release the credit memo
 InvokeResult invokeResult =
 soapClient.Invoke(
 new SalesInvoice { ID = invoice.ID},
 new ReleaseSalesInvoice()
);
 //Monitor the status of the release operation.
 //(The GetProcessResult function is defined below.)
 ProcessResult processResult = GetProcessResult(soapClient, invokeResult);

 //Obtain the released invoice with the needed information
 invoice = (SalesInvoice)soapClient.Get(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ID = processResult.EntityId,
 Type = new StringReturn(),
 ReferenceNbr = new StringReturn(),
 Status = new StringReturn(),
 Amount = new DecimalReturn(),
 Details = new SalesInvoiceDetail[]
 {
 new SalesInvoiceDetail
 {
 ReturnBehavior = ReturnBehavior.All
 }
 }
 });
}

//Long-running operation helper
public static ProcessResult GetProcessResult(
 DefaultSoapClient soapClient, InvokeResult invokeResult)
{
 while (true)
 {
 var processResult = soapClient.GetProcessStatus(invokeResult);
 switch (processResult.Status)
 {

| Contract-Based API Examples | 295

 case ProcessStatus.Aborted:
 throw new SystemException("Process status: " +
 processResult.Status + "; Error: " + processResult.Message);
 case ProcessStatus.NotExists:
 case ProcessStatus.Completed:
 //Go to normal processing
 return processResult;
 case ProcessStatus.InProcess:
 //Insert the needed waiting time here
 if (processResult.Seconds > 30)
 throw new TimeoutException();
 continue;
 default:
 throw new InvalidOperationException();
 }
 }
}

	Contents
	Copyright
	Integration Development Guide
	Limiting Connections of Integrated Applications
	License Restrictions for API Users
	Limitation of API Connections for Integrated Applications
	To Limit the Number of API Connections of Integrated Applications
	To Limit API Connections of a Particular Application

	Authorizing Client Applications to Work with Acumatica ERP
	Authorization Code Flow
	Implicit Flow
	Resource Owner Password Credentials Flow
	Comparison of the Flows
	To Register a Client Application
	To Revoke the Access of a Connected Application

	Configuring the Contract-Based REST and SOAP API
	Contract-Based Web Services API
	Endpoints and Contracts
	API Entities, Fields, and Actions
	Custom Fields
	Custom Endpoints and Endpoint Extensions
	Naming Rules for Endpoints
	Comparison of Contract Versions
	Comparison of System Endpoints
	Changes to the Entities, Fields, and Actions of the Default/18.200.001 Endpoint as Compared to the Default/17.200.001 Endpoint
	Changes to the Entities, Fields, and Actions of the Default/20.200.001 Endpoint as Compared to the Default/18.200.001 Endpoint

	To Create a Custom Endpoint
	To Extend an Existing Endpoint
	To Validate an Endpoint

	Working with the Contract-Based REST API
	Representation of a Record in JSON Format
	Sign-In to the Service
	Sign-Out from the Service
	Change of the Business Date or Current Branch
	Creation of a Record
	Update of a Record
	Retrieval of a Record by Key Fields
	Retrieval of a Record by ID
	Retrieval of Records by Conditions
	Retrieval of Data from an Inquiry Form
	Retrieval of Records with Attributes
	Parameters for Retrieving Records
	Removal of a Record
	Execution of an Action
	Attachment of a File to a Record
	Retrieval of a File Attached to a Record
	Retrieval of the Schema of Custom Fields
	Retrieval of the Acumatica ERP Version and the List of Endpoints
	Multi-Language Fields

	Working with the Contract-Based SOAP API
	Multi-Language Fields
	To Configure the Client Application

	Working with the Screen-Based SOAP API
	Screen-Based Web Services API
	API Objects Related to Acumatica ERP Forms
	Screen-Based API Wrapper
	To Generate the WSDL File of the Web Services
	To Import the WSDL File Into the Development Environment
	To Use the Screen-Based API Wrapper

	Working with Commands of the Screen-Based SOAP API
	Commands for Retrieving the Values of Elements
	Selection of a Group of Records for Export
	Commands for Setting the Values of Elements
	Commands for Clicking Buttons on a Form
	Commands for Adding Detail Lines
	Commands for Pop-Up Dialog Boxes and Pop-Up Forms
	Commands for Pop-Up Panels
	Commands for Record Searching: Filter Service Command
	Commands for Record Searching: Key Command
	Commands for Record Searching: Custom Field
	Commands That Require a Commit
	Commands for Working with Attachments
	Commands for Working with Multi-Language Fields

	Configuring Push Notifications
	Push Notifications
	Recommendations for the Data Queries
	Push Notification Destinations
	Push Notification Format
	To Configure Push Notifications
	To Process Failed Notifications

	Defining Push Notifications
	To Create a Built-In Definition
	To Connect to the SignalR Hub
	To Add Additional Information to Push Notifications
	To Create a Custom Destination Type

	Configuring Webhooks
	To Create an Implementation Class
	To Register an Implementation Class
	To Configure the External Application
	To Manage Request Log
	Webhook Configuration Example

	Contract-Based REST API Reference
	Contract-Based REST API of a Web Service Endpoint
	Contract-Based REST API of an Instance
	To Import a REST Schema to a Visual Studio Solution

	Contract-Based SOAP API Reference
	Login() Method
	Logout() Method
	SetBusinessDate() Method
	Get() Method
	GetList() Method (Contract Version 3)
	GetList() Method (Contract Version 2)
	Put() Method
	Delete() Method
	Invoke() Method
	GetProcessStatus() Method
	GetFiles() Method
	PutFiles() Method
	GetCustomFieldSchema() Method
	Attributes Property
	CustomFields Property
	ReturnBehavior Property (Contract Version 3)
	ReturnBehavior Property (Contract Version 2)

	Screen-Based SOAP API Reference
	Login() Method
	Logout() Method
	SetLocaleName() Method
	SetBusinessDate() Method
	GetScenario() Method
	GetSchema() Method
	SetSchema() Method
	Export() Method
	Submit() Method
	Import() Method
	Clear() Method
	GetProcessStatus() Method

	Contract-Based API Examples
	Inventory and Order Management (REST API Examples)
	Creation of a Bill for Particular Lines of a Purchase Order or Receipt
	Creation of a Purchase Receipts and Purchase Returns
	Creation of a Sales Order with Payments

	Project Accounting (REST API Examples)
	Creation of a Pro Forma Invoice
	Management of Account Groups
	Running of Project Billing
	Creation of a General Ledger Transaction with a Project Code That Does Not Produce a Project Transaction
	Time Entry
	Search for Time Entries by Date

	Customer Relationship Management (REST API Example)
	Linking of a Case to Another Case
	Linking of an Activity to an Entity
	Working with Attributes of Top-Level Entities

	POS Systems (SOAP API Examples)
	Entry of a Direct Sales Invoice
	Entry of a Direct Sales Invoice Along with a Return
	Entry of a Credit Memo with Positive and Negative Lines
	Entry of a Direct Sales Invoice in a Non-Default Currency
	Entry of a Direct Sales Invoice for a Shipped Order and Return
	Entry of a Direct Sales Invoice for an Unshipped Sales Order
	Entry of a Direct Sales Invoice for a Partially Shipped Sales Order
	Entry of a Credit Memo for an Unshipped Sales Order

